Potassium silver tin selenide, $\text{K}_2\text{Ag}_2\text{Sn}_2\text{Se}_6$

Hongyou Guo, Zenghe Li, Lin Yang, Ping Wang, Xiaoying Huang and Jing Li

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.
Potassium silver tin selenide,
K₂Ag₂Sn₂Se₆

Hongyou Guo,a* Zenghe Li,a Lin Yang,a Ping Wang,a Xiaoying Huangb and Jing Lib

a Department of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China, and b Department of Chemistry, Rutgers University, Camden, NJ 08102, USA
Correspondence e-mail: guohy@public.fhnet.cn.net

Received 1 August 2001
Accepted 30 August 2001

The title compound was synthesized by a reactive salt reaction at 773 K over a period of 5 d. It has a one-dimensional chain structure consisting of K⁺ cations and one-dimensional [Ag₂Sn₂Se₆]²⁻ anions. The chain is constructed by edge-sharing bitetrahedral [Sn₂Se₆] units connected in a 1:2 ratio via linear Ag⁺ ions.

Comment

Multi-component metal chalcogenides are of great interest due to their low-dimensional structures and unusual properties. Since Ibers and co-workers first synthesized K₄Ti₃S₁₄ crystals using a molten salt (alkali metal polysulfide flux) reaction at 648 K (Sunshine et al., 1987), great progress has been made in the flux growth of solid-state chalcogenides at intermediate temperatures. A number of Sn-containing quaternary systems have been reported so far, for example, KGaSnS₄ (Wu et al., 1992), A₂Hg₃Sn₂S₈ (A = Rb and Cs; Marking et al., 1998), and K₂MnSn₆Se₆, K₂MnSn₆S₆ and K₂Ag₂SnSe₄ (Chen et al., 2000). For the A₂M₂Sn₂Q₆ family (A = alkali metal; M = Cu, Ag or Au; Q = S or Se), the members with M = Cu and Au, including A₂Cu₂Sn₂S₆ (A = Na, K, Rb and Cs), A₂Cu₂Sn₂Se₆ (A = K and Rb), K₂Au₂Sn₆S₆ and K₂Au₂Sn₆Se₆, have been investigated (Liao & Kanatzidis, 1993). We report here a new member to the family, namely K₂Ag₂Sn₂Se₆.

K₂Ag₂Sn₂Se₆ has a one-dimensional structure containing a chain of [Ag₂Sn₂Se₆]²⁻ anions separated by K⁺ ions. The packing, viewed along the c axis, is shown in Fig. 1(a). The [Ag₂Sn₂Se₆]²⁻ chain is constructed by edge-sharing bitetrahedral Sn₆Se₆ units and Ag⁺ ions in a 1:2 ratio (see Fig. 1b). In the Sn₆Se₆ dimer, the bridging Se₁ atoms form Sn—Se bonds of 2.583 (8) Å, which are longer than the bonds formed between the terminal Se₂ and Sn atoms [2.5075 (7) Å]. This is due to the stress of the SnSe₁Sn four-membered ring. There are two nearly linear Se—Ag—Se bridging bonds between adjacent Sn₆Se₆ units, forming eight-membered Sn(SeAg-Se)₄Sn rings. The Se—Ag—Se fragments of the ring are not parallel to each other, while an Ag—Ag bond occurs inside the ring, with a distance of 3.0717 (19) Å. The [Ag₂Sn₂Se₆]²⁻ chains extend along the crystallographic c-axis direction and are separated by K⁺ ions. The shortest inter-chain Se—Se distance is 3.61 Å. There are three crystallographically distinct K⁺ ions. Each K⁺ ion is eight-coordinated by Se atoms in a square-antiprismatic arrangement, with K—Se distances ranging from 3.5244 (13) to 3.550 (3) Å. K₃ is statistically distributed among the available sites, with a 50% probability.

The title compound, K₂Ag₂Sn₂Se₆, is isostructural with K₂Au₂Sn₂S₆ and K₂Au₂Sn₂Se₆, but has a different structure type from A₂Cu₂Sn₂Q₆ (A = Na, K, Rb or Cs; Q = S or Se; Liao & Kanatzidis, 1993). Cu⁺ prefers tetrahedral coordination in A₂Cu₂Sn₂Q₆, while Ag⁺ and Au⁺ tend to adopt a linear coordination, as in K₂Ag₂Sn₂Se₆, K₂Au₂Sn₆S₆ and K₂Au₂Sn₆Se₆.

Experimental

A mixture of K₂Se (0.0640 g, 0.417 mmol), Ag (0.0450 g, 0.417 mmol), Sn (0.0459 g, 0.417 mmol) and Se (0.0998 g, 1.264 mmol) was loaded into a Pyrex tube in a glove-box under an argon atmosphere and then sealed under vacuum conditions (about 10⁻¹ Pa). The tube was gradually heated to 773 K and kept at that temperature for 5 d. It was then cooled at a rate of 4 K h⁻¹ to 473 K, followed by natural cooling.
to room temperature. Orange–red block-like crystals were isolated from the reaction product, washed with dimethylformamide and ethanol, and finally dried with anhydrous ether. Semi-quantitative elemental analysis for the crystal, performed on an electron probe micro-analyzer (Shimadzu EPM-8100Q) using energy dispersive spectroscopy (EDS), indicated the composition to be KAgSnSe$_{2.5}$. A single crystal was selected for X-ray crystal structure determination.

Crystal data

K$_2$Ag$_2$Sn$_2$Se$_6$

$M_r = 1005.08$

Tetragonal, $P4/mnc$

$a = 8.1730 (10)$ Å

$\mu = 23.18$ mm$^{-1}$

$V = 1354.5 (4)$ Å3

$Z = 4$

$D_x = 4.929$ Mg m$^{-3}$

Mo $K\alpha$ radiation

Cell parameters from 25 reflections

$\theta = 5.9$–11.7$^\circ$

$T = 293$ (2) K

Block, orange–red

Intensity decay: 0.08 to 0.05 Å2

Data collection

Enraf-Nonius CAD-4 diffractometer

ω scans

Absorption correction: ψ scan

(Kopfman & Huber, 1968)

$T_{min} = 0.208, T_{max} = 0.314$

1946 measured reflections

1029 independent reflections

546 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2

$R(F^2) = 0.031$

$wR(F^2) = 0.048$

$S = 0.99$

546 reflections

35 parameters

Direct phase determination yielded the positions of the Ag, Sn and Se atoms. The remaining K atoms were located from the subsequent difference Fourier synthesis. The highest residual electron-density peak was located 1.08 Å from K3.

Data collection: CAD-4-PC Software (Enraf–Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4/PC

Table 1

Selected geometric parameters (Å, °).

<table>
<thead>
<tr>
<th></th>
<th>Sn1–Se2</th>
<th>2.5075 (7)</th>
<th>Ag1–Se2$^{\text{iv}}$</th>
<th>2.4935 (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn1–Se2$^{\text{i}}$</td>
<td>2.5075 (7)</td>
<td>Ag1–Se2</td>
<td>2.4935 (7)</td>
<td></td>
</tr>
<tr>
<td>Sn1–Se1</td>
<td>2.5839 (8)</td>
<td>Ag1–Ag1$^{\text{i}}$</td>
<td>3.0717 (19)</td>
<td></td>
</tr>
<tr>
<td>Se2–Sn1–Se2$^{\text{ii}}$</td>
<td>114.74 (3)</td>
<td>Se2–Sn1–Se1$^{\text{ii}}$</td>
<td>111.76 (3)</td>
<td></td>
</tr>
<tr>
<td>Se2–Sn1–Se1</td>
<td>111.76 (3)</td>
<td>Se1–Sn1–Se1$^{\text{ii}}$</td>
<td>93.08 (3)</td>
<td></td>
</tr>
<tr>
<td>Se2$^{\text{iv}}$–Sn1–Se1$^{\text{iv}}$</td>
<td>111.78 (3)</td>
<td>Se2$^{\text{iv}}$–Ag1–Se2</td>
<td>174.72 (5)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) $-x, 1-y, z$; (ii) $-x, 1-y, -z$; (iii) $-x, y, 1/2-z$. (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL97 (Keller, 1997).

The authors wish to thank the National Science Foundation for its generous support through grant DMR-9553066.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1017). Services for accessing these data are described at the back of the journal.

References

