(a) Prove that M' is also a projective plane.

IA1: There is a unique line thru every two points in M.

In M, this means: Every two lines intersect at a unique point in M.

That every two lines meet is the elliptic parallel property in M. That the intersection is unique follows from Prop 2.1.

IA2': Every line has at least three points in M.

In M, this means: There are three distinct lines thru every point in M.

This is proved as follows. Given a point P.

By Prop 2.4, \exists a line ℓ not thru P.

By IA2' from M, ℓ has three points A, B, C on it.

Therefore, there are at least three lines ℓ, ℓ_B, ℓ_C thru P.

IA3: There are three non-collinear points in M'.

In M, this means: there are three non-concurrent lines.

This is Prop 2.2.

Elliptic Parallel Property: Every two lines intersect at a point in M.

In M, this means: There is a line thru every two points in M. This is IA1.

(b) Let \(A \in \ell_1, A' \in \ell_2 \) be points that are not the intersection C.

Let \(p \) be another point on \(\overrightarrow{AA'} \).

We then establish a 1-1 correspondence between points on \(\ell_1 \) & points on \(\ell_2 \) as follows: Let \(B \) be a point on \(\ell_1 \).

Let \(B' \) be the intersection of \(pB \) & \(\ell_2 \).

Points on \(\ell_1 \) \(\leftrightarrow \) points on \(\ell_2 \)

\(B' \leftrightarrow B \)

Therefore, the number of pts on \(\ell_1 \) = the number of pts on \(\ell_2 \).
Yes, it is a model for incidence geometry,

IA1: For every two points on the punctured sphere, there is a great circle thru P, Q, and N. That is the intersection of the plane thru PQN with the sphere.

IA2: Every great circle in \mathbb{R}^3 has infinitely many points.

IA3: There are more than one great circle thru N.

This model satisfies the Euclidean parallel postulate.

(Notice that "N" is removed from the "lines".)
(a) Choose a line l_1, not thru P.

Each line thru P intersect l at a unique point. Therefore

$\text{# of lines thru } P = \text{# of points on } P = n+1$

(b) As in Part (a), each point in M must be on a line thru P. There are $n+1$ such lines, each has n points (excluding P). Therefore

$\text{Total number of points}$

$n \cdot (n+1) + 1 = n^2 + n + 1$

for P

(c) Given a line l_2. Each other line must meet l_2 at a point.

There are $n+1$ points on l_2.

Each has n lines thru it (excluding l_2).

Therefore,

$\text{Total # of lines} = n(n+1) + 1 = n^2 + n + 1$