2. (a) \(\neg(P \lor Q) \iff (\neg P \land \neg Q) \)
(b) \(\neg(P \land \neg Q) \iff (\neg P \lor Q) \)
(c) To prove \((P \implies Q) \iff (\neg P \lor Q)\), we look at the negation of both statements:
\(\neg(P \implies Q) \iff (P \land \neg Q) \)
\(\neg(\neg P \lor Q) \iff (P \land \neg Q) \)
Which implies that the original statements should be equivalent.
(d) If \(H \) and \(\neg C \) imply a contradiction \((S \text{ and } \neg S)\), then, if \(H \) we necessarily have \(C \), i.e. \(H \implies C \).

4. \(\neg(\text{For every line } l \text{ and for every point } P \text{ that does not lie on } l \text{ there exists a unique line } m \text{ through } P \text{ that is parallel to } l)\):
There exists a line \(l \) and a point \(P \) that does not lie on \(l \) such that either there exist more than one line through \(P \) parallel to \(l \), or all the lines through \(P \) intersect \(l \).

5. (b) The converse is:
Let \(l \) and \(m \) be two lines, and \(t \) a transversal to \(l \) and \(m \). If \(l \) and \(m \) meet on one side of the transversal then the sum of the degrees of the interior angles on that side of the transversal is less than \(180^\circ \).