Exercise IV

Remarks: In all the algorithms, always explain their correctness and analyze their complexity.

• Question 1: Let G be a graph that looks as follows:

![Graph](image)

The graph has paths that are all disjoint except for the start point s that is mutual to all paths. Let t be the number of paths, and k be the length of every path. Let v be the endvertex of one of the paths. Compute $h_{s,v}$.

Answer: Note that all edges in the graph are bridges. The number of edges in the graph is $m = t(k - 1)$. Split the path from s to v into its edges, (s, x) and then (x, y) and so on, until the last edge (z, v). As explained in class:

$$h_{s,v} = h_{s,x} + h_{x,y} + \ldots + h_{z,v}.$$

Observe that because the edges are bridges, $h_{s,v} + h_{v,s} = 2m = 2t(k - 1)$, and the same for all other edges. So:

$$h_{s,v} + h_{v,s} = (h_{s,x} + h_{x,s}) + (h_{x,y} + h_{y,x}) + \ldots + (h_{z,v} + h_{v,z}) = (k - 1)\cdot 2m.$$

But, we know that $h_{v,s} = (k - 1)^2$ (its simply as in a path). So

$$h_{s,v} = 2(k - 1)^2 \cdot t - (k - 1)^2.$$
Question 2: Let G be a directed and strongly connected graph with maximum out-degree Δ. Let v and u be two vertices in the graph.

1. Show that with probability at least $1/\Delta^{n-1}$, a random walk that starts at v arrives to u in at most $n-1$ steps.

Answer: As the graph is strongly connected, there is some simple path P from v to u. The length of P is at most $n-1$ (as otherwise P must contain a cycle). We can now compute the probability that the random walk crosses the graph exactly along the edges of P. Let w be the current location of the random walk. In the next step, there is one “correct” edge (the one from P) among the (at most) Δ outgoing edges of w. The probability to continue over this edge is $1/\Delta$. The probability to do so repeatedly over all the edges of P is $1/\Delta \cdot |P|$. As $|P| \leq n-1$, the claim follows.

2. Show that the hitting time $h_{v,u}$ (the expected time to get from v to u) is finite in every directed graph.

Answer: Assume we take $\rho \cdot \Delta^{n-1}$ walks each of length $n-1$ ($\rho \cdot \Delta^{n-1} \cdot (n-1)$ length walk in total). By the above claim, the probability to hit u in a single walk of length $n-1$ is at least $1/\Delta^{n-1}$. Thus, the probability not to hit u in a single walk is at most $1 - 1/\Delta^{n-1}$. The probability not to hit u in all the $\rho \cdot \Delta^{n-1}$ walks is

$$(1 - 1/\Delta^{n-1})^\rho < e^{-\rho}.$$

By definition, the hitting time $h_{v,u}$ is:

$$\sum_{i=1}^{\infty} i \cdot Pr(\text{It takes } i \text{ time units to get from } v \text{ to } u) =$$

$$\sum_{i=1}^{n-2} i \cdot Pr(\text{It takes } i \text{ time units to get from } v \text{ to } u) + \sum_{i=n-1}^{\infty} i \cdot Pr(\text{It takes } i \text{ time units to get from } v \text{ to } u)$$

The first sum of the 2 is clearly finite. We now bound:

$$\sum_{i=n-1}^{\infty} i \cdot Pr(\text{It takes } i \text{ time units to get from } v \text{ to } u) \leq \sum_{i=n-1}^{\infty} i \cdot exp(i/n - 1).$$

The last inequality was proven in the previous item. Obviously, for $i > (n-1)^2$, $i \cdot exp(i/n - 1) << 1/i^2$. Hence, we can bound the tail of the sum by $\sum_{i \geq (n-1)^2} 1/i^2$ which is a constant. Hence, the sum is finite.

Question 3: Consider the following directed strongly connected graph: The graph is essentially a directed path, with all vertices in the path having an edge going into the start vertex of the path. Say that the path has length n and let 0 and n be the left and right endvertices of the path. Show that $h_{0,n} = \Omega(2^n)$.
Answer: A typical walk, is currently at some vertex w. The vertex w has two choices (two outgoing edges). One edge, lets call it f, goes one step forward and the second edge b goes back to beginning at 0. In order to cross from 0 to n, we need n consecutive f moves (any b move brings us back to the beginning). The probability for an f or b move is $1/2$. We showed in the first exercise that the expected streak of f, (actually, the expected size of the largest consecutive series of either f or b) in a sequence of k coin tosses (when f and b occur with probability $1/2$) is $\log k$. We need $\log k = n$ to get n consecutive f. So, we need $k = 2^n$ steps.

• Question 4: Let G be a graph with $\text{deg}(v) \geq 2n/3$ for every v.

1. Show that the neighbors of every two vertices have large intersection: $|N(u) \cap N(v)| \geq n/3$ for very $u, v \in V$.

 Answer: Note that $|N(u)| + |N(v)| \geq 4n/3$. As $n \geq |N(u) \cup N(v)| = |N(u)| + |N(v)| - |N(u) \cap N(v)|$ we get that $-|N(u) \cap N(v)| \geq n/3$.

2. Say that the move is now at w. Let v be another vertex. Show that with probability at least $1/3$ the next vertex in the walk is a neighbor of v.

 Answer: Since $|N(w) \cap N(v)| \geq n/3$, and $|N(w)| \leq n$, we get that there are at least a third of the neighbors of w that are neighbors of v as well (namely,
\[|N(v) \cap N(w)|/|N(w)| \geq 1/3. \] Since the next walk chooses a random vertex, the claim follows.

3. Show that \(h_{u,v} \) is \(O(n) \) (for any \(u \) and \(v \)) in such a graph.

Answer: With probability at least \(1/3 \), we get to \(v \) in the next two moves: go to a neighbor of \(v \) (probability at least \(1/3 \)) and then go to \(v \) (probability at least \(1/n \)). Thus, we can treat reaching \(v \) as a geometric variable with probability of success at least \(1/3n \). Thus, the expected number of steps to get to \(v \) is at most \(2 \cdot 3n \) (we have multiplied by 2, because it takes two steps to get the \(1/3n \) probability of getting to \(v \)).

Question 5: Show that the cover time of the graph in question 4 is \(O(n \cdot \log n) \).

Answer: We know that with probability \(1/3n \) or more, we reach a vertex \(v \) (regardless of the position of the walk right now). Say we take \(6 \cdot \rho \cdot n \) length walk. The walk can be regarded as \(3\rho \cdot n \) independent 2 step walks. The probability to get to \(v \) in a specific 2 step stage is at least \(1/3n \). Thus, the probability not to get to \(v \) in a two step walk is at most \(1 - 1/3n \). The probability not to get to \(v \) at \(6 \cdot \rho \cdot n \) length walk is at most

\[
\left(1 - \frac{1}{3n}\right)^{3\rho n} = \exp(-\rho).
\]

The probability that there is at least one vertex that we have not reached after a \(6 \cdot \rho \cdot n \) walk is bounded as follows:

\[
Pr(\text{ We did not cover all the graph }) = Pr(\bigcup_{v \in V} \text{ We did not cover } v) < \sum_{v \in V} Pr(\text{ We did not cover } v) < n \cdot \exp(-\rho).
\]

For any \(i \), put \(i = 6 \cdot \rho \cdot n \), or \(\rho = i/6n \). Thus, the probability that the cover time is at least \(i = 6\rho \) is at most \(n \cdot \exp(-i/6n) \). Now, consider the cover time:

\[
\sum_{i=1}^{\infty} i \cdot Pr(\text{ The graph is covered after } i \text{ steps}).
\]

For \(30 \log n \cdot n \leq i \leq n^2 \), the term \(i \cdot n \cdot \exp(-i/6n) \) is bounded by \(n^2 \cdot n \cdot n^{-5} \leq 1/n^2 \). For \(i > n^2 \) the term \(i \cdot n \cdot \exp(-i/6n) \) is bounded by \(1/n^2 \). It follows that up to an additive constant, the cover time is:

\[
\sum_{i=1}^{30 \cdot n \cdot \log n} i \cdot Pr(\text{ The graph is covered after } i \text{ steps}) \leq 30 \cdot n \cdot \log n.
\]