Prim & Kruskal

The time complexity of Prims Algorithm:

We need to maintain the distance of each vertex from the small tree T in each iteration. We enter the vertices into a priority-queue (a heap) with this distance from T as a key. Initially we have the tree as a single vertex v. The key of $u \neq v$ is $dist(u, v)$. We insert into a heap all the vertices (V times $O(\log V)$ is $O(V \cdot \log V)$ in total).

Now, each time a vertex u enters the small tree T, we must do a (possible) decrease-key to all its neighbors (as their distance to T may have decreased and be replaced by $dist(w, u)$, if $dist(w, u)$ is smaller than their current distance). This adds to at most $O(E)$ decrease-keys (one per each edge, or alternatively, $\sum_{v \in V} deg(v) = O(E)$). We saw in class that each Decrease-Key requires $O(\log V)$ time: so $O(E \cdot \log V)$ in total.

Finally, V times of delete-minimum (to choose the vertex joining the tree) add up to $O(V \cdot \log V)$. As the graph is connected, $V = O(E)$, so the running time is:

$$O(E \cdot \log V).$$

Note that using Fibonacci-Heaps, one can do each decrease-key in $O(1)$ so the time is $O(E + V \cdot \log V)$ (check this!)

Proof of Correctness for the Kruskal algorithm:

Let $\{T_i\}$ be the collection of trees (forest) we are “growing”. We prove by induction on the edges added, that there is always an optimum tree T^* containing all the edges of $\bigcup_i T_i$. This means that at the end, after $n - 1$ edges are added, we get an optimum tree (why?).

Initially, we have no edges, and each vertex is an isolated vertex. So any T^* contains the empty set.

Now, suppose after i edges are added, there is an appropriate optimum tree, and consider the next edge e added. This is (according to the algorithm) the smallest edge e not closing a cycle. In other words, the smallest edge e passing from one tree, say T_1 to another tree, say T_2 (edges internal to some T_i close a cycle).

If $e \in T^*$, we are done (why?). Suppose now that $e \notin T^*$. Add e to T^*. A unique cycle C is closed. The edge e belongs to the cycle C. Now, go over the cycle starting with walking on e from T_1 to T_2. Continuing over this cycle, we must return to T_1 (why?). The edge e' that first returns to T_1, is an edge connecting two sub-trees $\{T_i\}$ one of which is T_1 (why?). So, by the property of the algorithm:

$$w(e) \leq w(e').$$

So, the tree $T^* \setminus \{e'\} \cup \{e\}$ is still a legal tree and is minimum because its weight is identical
to the weight of T^*. Further, this tree contains e, as required.