Exercise II

Remarks: All the graphs here are without self loops and parallel edges. We use the notation \(\delta(G) \) for the minimum degree in \(G \). In all the algorithms, always explain their correctness and analyze their complexity. The complexity should be as small as possible. A correct algorithm with large complexity, may not get full credit.

- **Question 1:** Let \(G \) be a graph and \(k \) a positive integer such that \(\delta(G) \geq k \). Prove that there is a simple path in \(G \) of length at least \(k \).

 Solution: Pick a vertex \(u \). Let this be a path of length 0. Each path has two endpoints. For each endpoint \(v_l \) and \(v_r \), see if it has a neighbor outside the path (to a vertex that is not right now in the path.) If there exist such a neighbor, extend the path by 1 as long as possible, in both directions.

 Let the number of vertices in the resulting path (after no more extensions are possible) be \(i \), let \(v_r \) be the current right end vertex of the path. Because \(\delta(G) \geq k \), \(deg(v_r) \geq k \).

 Now, all the neighbors of \(v_r \) are within the path, otherwise we can extend the path. So, \(v_r \) has at least \(k \) neighbors in the path. In particular, beside \(v_r \), there are at least other \(k \) vertices in the path. Thus \(i \geq k + 1 \) and hence the length of the path (which is \(i - 1 \)) is at least \(k \).

- **Question 2:** Let \(G \) be a graph with \(n \) vertices and \(m \) edges. Show that there exist a subgraph \(G'(V', E') \) of \(G \) such that \(\delta(G') \geq m/n \). Deduce that every graph \(G \) has a simple path of length at least \(m/n \). Give an algorithm that finds such a path.

 Solution: If there is a vertex \(v \) with \(deg(v) < m/n \), remove it and all its neighbors from the graph. Re-compute the degrees. Again, if there is a vertex whose (new) degree is less than \(m/n \), remove it. Note that the degrees change, but we use the original \(m \) and \(n \) all the time. Continue this way until there are no more vertices with degree smaller than \(m/n \).

 We must show only that the graph does not turn empty. This is easy: we removed no more than \(n \) vertices, and for each removed vertex, deleted strictly less than \(m/n \) edges. So we delete strictly less than \(m \) edges, so some edges remain, and the graph is thus not empty.

 Combining questions 1 and 2, we compute the subgraph with \(\delta \geq m/n \) and then find a path of length at least \(m/n \). The complexity is clearly bounded by \(O((E + V) \log V) \) (check it!).

- **Question 3:** Design an algorithm that gets \(G(V, E) \) and \(s, t \in V \), and computes the number of different shortest paths between \(s \) and \(t \).

 Solution: The solution uses dynamic programming. For simplicity, say that we compute the BFS distances from \(s \) to all other vertices first, and let \(D^s_i \) be the vertices of distance \(i \) from \(s \). We make a \((n + 1) \times n \) table \(M \), with the \(i \) row concerning the \(D^s_i \)
vertices. For $j \in D_i^p$, the i, j row contains the number of shortest paths between s and j. The first row is all 0 except for a 1 in the column of s (as there is a single path from s to s of zero distance, the empty path).

To fill the next row, consider a vertex $q \in D_{i+1}^p$. Let q_1, q_2, \ldots be the vertices in D_i^p that have outgoing edges into q (q is their neighbor). Then you put in the $M[i + 1, q]$ entry of the matrix, the sum of $M[i, q_1] + M[i, q_2] + \ldots$. This is because to get to q in a shortest path from s, you must first reach q_1 or q_2, and so on.

The exact details of the algorithm are left for the reader. As described, the algorithm runs in $O(n^2)$ steps, but can be made to run in $O(E)$. The correctness is by a simple induction which is left for the reader.

Question 4: An undirected graph is connected if the (unweighted) distance between every pair is finite. The connected components of a non-connected graph are the connected parts of the graph. Give an algorithm that computes the connected components of a graph.

Solution: Store a linked list L with all the vertices of the graph. Pick a vertex v on the list. Compute BFS from v. All the vertices of finite distance from v are the next connected component of G. This is because for every w, y so that $\text{dist}(v, w), \text{dist}(v, y)$ is finite, there is a path from w to y via v.

Then, remove all vertices with finite distance from v from L. Pick a vertex that remains in L still, and iterate. The algorithm ends when L is empty.

If the connected components are $G_i(V_i, E_i), V = \bigcup V_i, E = \bigcup E_i$, then the running time is $\sum_i O(|V_i| + |E_i|) = O(|E| + |V|)$.

Question 5: A directed graph is called strongly connected if for every $u, v \in V$ there exist a directed path from u to v and also a directed path from v to u (that is, its possible to get from any vertex to any other vertex). Design an algorithm that checks if a given graph is strongly connected.

Solution: We first prove:

Lemma 0.1 A graph is strongly connected if and only if for every given vertex v, there is a path for v to every other vertex u, and vice-versa, a path from every other vertex u to v.

Note that in the above lemma v is fixed, namely, we do not require a path from every w to every u, rather, only paths from v to the rest, and from the rest of the vertices to v. In proof, if G is strongly connected, then certainly the claim holds. Now, in the other direction, suppose there is a path from v to any w and from any w to v. Say that I want to reach z from t. Now, go from t to v, and then go from v to z. Namely, go from t to z via v. This completes the proof.

Now, chose an arbitrary v. Checking if its possible to reach all $V \setminus \{v\}$ from v is done via a single BFS search, and then checking that $d[u] < \infty$ for all $u \in V$.

To check if its possible to get from all $V \setminus \{v\}$ to v is done as follows: reverse the direction of the edges (i.e., compute the graph with each $u \leftarrow v$ turned into $u \rightarrow v$)

2
and then do BFS from v. Clearly, this gives what’s needed. The time is twice $O(E + V)$ which is still $O(E + V)$.

• **Question 6:** Let G be an undirected graph. A pair of vertices $u, v \in V$ is called a connected pair, if there is a path between v and u in the graph. Design an algorithm that finds the number of different connected pairs in G.

Solution: Compute the connected components. In a connected component with j vertices, there are $j \cdot (j - 1)/2$ connected pairs (this is j choose 2).

So, if j_1, \ldots, j_t is the number of vertices in each of the t connected components, the answer is $\sum_{i=1}^{t} j_i \cdot (j_i - 1)/2$. The running time is $O(E + V)$.