Proof for Dijkstra’s Algorithm

In what follows, we denote the distance between \(s \) and \(u \), by \(\delta(u) \).

Claim 0.1
In any moment where \(\lambda(u) = k \), there exist a path from \(s \) to \(u \) of length \(k \).

We prove this by induction on the time that this value \(\lambda \) was given. The first value of \(\lambda \) given is \(\lambda(s) ← 0 \), and clearly there is a path from \(s \) to \(s \) of length 0.

Now, next time line 5 takes place, \(\lambda(v) ← \lambda(u) + l(e) \), we may assume by the induction hypothesis that there is a path between \(s \) and \(u \) of length \(\lambda(u) \). Now, this path plus the edge \(u \rightarrow v \) gives a path from \(s \) to \(v \) of length \(\lambda(u) + l(e) \) which is exactly the current value of \(\lambda(v) \).

Corollary 0.2
In each moment, \(\lambda(u) \geq \delta(u) \).

Our main claim is:

Theorem 0.3
Whenever \(u \) is elected on line 3 of the algorithm, \(\lambda(u) = \delta(u) \)

Since \(t \) is eventually chosen, this gives the desired claim. We prove this by induction on the iteration of line 3. In the base of the induction, \(s \) is chosen and the claim is clear.

Now suppose that \(u \) is chosen in iteration \(i + 1 \). Assume for the sake of contradiction that \(\lambda(u) \neq \delta(u) \). By Corollary 0.2, it must be the case that

\[
\lambda(u) > \delta(u). \tag{1}
\]

Choose a shortest path \(P \) between \(s \) and \(u \). Let \(x \) be the rightmost vertex in the path that was chosen before in line 3 (that is, chosen before \(u \) that is now the chosen one). See next figure. We first claim that

\[
\delta(y) = \delta(x) + l(x, y) \tag{2}
\]

This is explained as follows. First assume that \(\delta(y) < \delta(x) + l(x, y) \). Let \(P_3 \) be a shortest path between \(s \) and \(y \). Let \(P_2 \) be the part after that in \(P \) namely, the path from \(y \) to \(u \). Append \(P_2 \) to \(P_3 \), and you will get a path from \(s \) to \(u \) of length smaller that \(l(P) \) (the length of \(P \)). This can not be (\(P \) is a shortest path between \(s \) and \(u \)).

Now, since there is a path from \(s \) to \(y \) of length \(\delta(x) + l(x, y) \) (indeed, this is the shortest path from \(s \) to \(x \) that goes then to \(y \) via the edge \((x, y) \)) it can not be that \(\delta(y) > \delta(x) + l(x, y) \). Hence we have established Equation 2.

Since \(x \) is chosen before \(u \), by the induction hypothesis, we have that:

\[
\lambda(x) = \delta(x) \tag{3}
\]

Now, when \(x \) is chosen, we update in line 3 the value of \(\lambda(y) \), and thus

\[
\lambda(y) \leq \lambda(x) + l(x, y) = \delta(x) + l(x, y). \tag{4}
\]

The last equality follows from Equation 3. By Equation 2 and Corollary 0.2 we get that

\[
\lambda(y) = \delta(y) \tag{5}
\]
Now, as y is not chosen yet in line 3 of the algorithm, and as we choose the vertex with minimum λ, we get that:

$$\lambda(u) \leq \lambda(y)$$

Finally, we also establish that

$$\delta(y) \leq \delta(u).$$

This is because y is on the way to u from s in the shortest path. Also, the length of P_2, $l(P_2)$ is non-negative, as we deal with non-negative weights. These two remarks give Inequality 7.

Thus we finally conclude:

$$\lambda(u) \leq \lambda(y) = \delta(y) \leq \delta(u) < \lambda(u)$$

This gives $\lambda(u) < \lambda(u)$, a contradiction.