Exercise I

Remarks: In all the algorithms, always explain their correctness and analyze their complexity. The complexity should be as small as possible. A correct algorithm with large complexity, may not get full credit.

Solve the following 5 questions.

Question 1: Let A and B be two sorted arrays of n elements each (thus $A + B$ has $2 \cdot n$ elements in total). Give an algorithm that finds the median of $A \cup B$.

Question 2: Given a sorted array A of n numbers and an additional number x, give an algorithm that checks if there is i so that $(A[i])^2 = x$.

Question 3: Given an array A of size $n - 2$ that contains all the numbers $1, 2, 3, \ldots, n$ except for two. Give an algorithm to find the two missing numbers. Use a constant extra space (namely apart from the array, only a constant number of variables).

Question 4: Given an array A with maximum M and minimum m.

1. Show that there is a pair of numbers $A[i], A[i + 1]$ so that $|A[i] - A[i + 1]| \leq (M - m)/(n - 1)$

 Hint: "Average"

2. Give an algorithm that finds such numbers

Question 5: We are given a collection of n arrays, A_1, A_2, \ldots, A_n each with n sorted numbers (every array is sorted). Give an algorithm to get from them one big sorted array of n^2 elements.

Important remark: You are not allowed to use Priority Queues. There is a way to get a reasonable running time without priority queues.