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Abstract

This paper discusses the problem of selecting a set of sensors of
minimum cost that can be used for the synthesis of a supervisory con-
troller. It is shown how this sensor selection problem is related to
a type of directed graph st-cut problem that has not been previously
discussed in the literature. Approximation algorithms to solve the sen-
sor selection problem can be used to solve the graph cutting problem
and vice-versa. Polynomial time algorithms to find good approximate
solutions to either problem most likely do not exist (under certain com-
plexity assumptions), but a time efficient approximation algorithm is
shown that solves a special case of these problems. It is also shown how
to convert the sensor selection problem into an integer programming
problem.

1 Introduction

When a controller operates on a system so that the behavior of the controlled
system matches some specification, the controller may not need sensors to
observe all behavior in the system. That is, there may be several sets of
sensors that could be selected for the controller to use that would be suffi-
cient for the controller to match the specification. Therefore, if there is a
cost associated with allowing a controller to use a sensor, then for reasons of
economy or simplicity it may be desired that the controller use a set of sen-
sors with the lowest cost possible. However, the lowest cost sensor selection
may not always be obvious when designing a controller. This paper discusses
this sensor cost minimization problem using the framework of supervisory
control theory and discrete-event systems introduced in the seminal works
[12, 13].

In the framework of this paper the behavior of the systems and specifica-
tions are modeled as finite state automata. Controllers may have sufficient
actuation to disable some events but not others as in [12, 13]. Similarly, as
alluded to above, a controller may not be able to observe all system events.
The framework presented in [10] is used to model the observation behavior
of a set of sensors where each sensor is assigned to observe all occurrences of
exactly one event and the sensors are deterministic such that they report all
occurrences of the events they are designated to sense. Therefore, a given
sensor selection for a controller effectively partitions system events into a set
events whose occurrences are always observed by the controller and a set of
events that are never observed by the controller. Each sensor is assumed to
have a non-negative and possibly non-uniform cost of installation to observe
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its assigned event such that once a sensor is installed there is no extra cost
associated with the use of that sensor.

Unfortunately, for the specialized case of uniform sensor cost, the optimal
sensor selection problem outlined above is NP-complete ([21]). This means
that there is most likely no algorithm that runs in polynomial time and
always calculates the minimal cost sensor selection. Fortunately, effective
polynomial time approximation algorithms exist for many real-world NP-
complete optimization problems ([2]). With this in mind, an approximation
of the minimal sensor selection may commonly be sufficient and accept-
able for practical use. Therefore, an interesting compromise to designing
algorithms to find the minimum cost sensor selection would be to develop
methods to approximate the minimal cost sensor selection. Hopefully some
bounds could be placed on the closeness of the approximations found this
way as not all NP-complete problems have equally effective polynomial-time
approximation methods. However, there has been little investigation into
the calculation of approximate solutions to many computationally difficult
supervisory control problems. Therefore, this paper explores the problem of
approximating solutions to the sensor cost minimization problem.

Variations of the sensor selection problem using frameworks similar to
the one used in this paper have been investigated in [4, 6, 7, 21, 22]. The
problem of designing an observation function that is as coarse as possible
is discussed in [4]. A projection mapping is assumed in [4] that is different
from the natural projection operation used as the observation function in
this paper, and optimization and approximation methods are not discussed
in [4]. The optimization of the observable event set is discussed in [6] for
achieving both observability and normality for a problem setting very sim-
ilar to that discussed here. An exponential-time algorithm is shown in [6]
for giving an optimal observable set. An algorithm is given in [22] for opti-
mizing the sensor selection set in exponential time along with a polynomial
time algorithm for finding exactly one locally minimum sensor selection. An
optimal sensor selection problem is also discussed in [7], except the observa-
tion function is different from the one assumed in this paper. Preliminary
versions of the results presented in this paper are shown in [8].

In the next section the necessary background information from supervi-
sory control and computer science is given. The problem statement of the
minimal cost sensor selection problem is formulated in Section 3. The sensor
selection problem is related to a type of directed graph st-cut problem in
Section 4, and some inapproximability results for the sensor selection and
graph cutting problems are shown in Section 5. A polynomial time approxi-
mation algorithm for a special case of the sensor selection and graph cutting
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problems is shown in Section 6. Section 7 shows how the minimal cost sensor
selection problem can be converted into an integer programming problem.
The paper closes with a brief discussion of the results in Section 8.

2 Notational Review

To aid the reader, this section gives a review of necessary concepts of su-
pervisory control and theory of computation. First, the supervisory control
models of [10, 12, 13] are presented in Subsection 2.1, and Subsection 2.2
discusses some fundamental results related to the theory of computation. A
more indepth review of supervisory control is given in [3] and the theory of
computation is more deeply discussed in [2, 5, 20].

2.1 Supervisory Control

In the supervisory control framework systems and specifications are re-
spectively modeled as the automata G = (XG, xG

0 , Σ, δG, XG
m) and H =

(XH , xH
0 , Σ, δH , XH

m ) where XG and XH are sets of states, xG
o and xH

o are
initial states, Σ is the common event set of the automata, δG : XG×Σ → XG

and δH : XH ×Σ → XH are the (possibly partial) state transition functions,
and XG

m and XH
m are sets of marked states.

Deterministic system and specification automata are exclusively used
in this paper. The state transition function can be extended in the usual
manner to be defined over strings of events. The notation x

s
7→By is also

sometimes used in this paper to denote that according to the transition rules
of a possibly nondeterministic automaton B, there is a path of transitions
from x to y labeled by the string s.

The language generated by an automata G is the set of strings

L(G) = {s ∈ ΣG∗
|δG(xG

0 , s)!}

that are defined in G from the initial state. Note that the unary operator
! for f(α)! returns true if f(·) is defined for input α, false otherwise. The
language marked by an automata G is the set of strings

Lm(G) = {s ∈ ΣG∗
|δG(xG

0 , s) ∈ XG
m}

that lead to a marked state from the initial state. The language generated
(L(G)) is a prefix-closed language, i.e., it contains all the prefixes of all its
strings, but the marked language (Lm(G)) is not prefix-closed in general.
For a language K, the language K denotes the set of all the prefixes of all
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the strings in K. An automaton that marks a prefix-closed language is called
a prefix-closed automaton. An automaton G is said to be nonblocking if the
prefix-closure of its marked language is equal to its generated language, i.e.,
Lm(G) = L(G). Therefore, G is nonblocking if for any string of behavior
s ∈ L(G) there always exists another string t such that st ∈ Lm(G).

Following the modeling formalisms of [10, 12, 13], systems are modeled
as finite state automata with supervisory controllers. Controllers may have
a set of sensors to observe a set of system events Σo ⊆ Σ with each sensor
assigned to deterministically observe all occurrences of exactly one event.
Furthermore, on the occurrence of observable events, controllers may be
given sufficient actuation to selectively disable a subset of the controllable
events Σc ⊆ Σ. Controllers can be realized as finite state automata that
observe some events and control a potentially different set of events. Con-
trollers should not be able to disable uncontrollable events and control ac-
tions should not update on the occurrence of unobservable events.

Given a controller S and a system G, the composed system of S con-
trolling G is denoted as the controlled system S/G. The generated behavior
of the controlled system S/G is said to match the generated behavior of a
specification H if L(S/G) = L(H), and the marked behavior of the con-
trolled system S/G is said to match the marked behavior of a specification
H if Lm(S/G) = Lm(H). Controller S is said to be nonblocking for system
G if S/G is nonblocking, i.e., if Lm(S/G) = L(S/G). Also, let Σuc = Σ\Σc

denote the set of uncontrollable events.
For a given set of observable events Σo ⊆ Σ, a natural projection op-

eration P : Σ → Σo is used to model a controller’s observations of system
behavior. For the empty event ǫ, P (ǫ) = ǫ, and for a string of events s and
an event σ,

P (sσ) =

{

P (s)σ if σ ∈ Σo

P (s) otherwise
.

The inverse function P−1 : Σ∗
o → 2Σ∗

is defined such that

P−1(s) = {t|P (t) = s}

is the set of strings with s as their common projection.
As system behavior progresses and a string of events s is generated by

the system, a controller would observe P (s). The controller would then use
the observation projection P (s) to estimate the current system state and
determine its control action. A controller is said to be admissible if it only
attempts to disable controllable events and updates its control action only
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on the occurrence of observable events. See Figure 1 for a schematic of a
system G that is controlled by the controller S to match a specification H.
In this figure, a string of behavior s is generated by G and P (s) is observed
by the controller. After observing P (s), the controller enforces control action
S(P (s)) on the behavior of G.

Specification

HG

SystemController

S

S(P(s))

Control Action

s

System Behavior
P(s)

Observation

=
?

Figure 1: Schematic of a supervisory control system

Three important properties related to controller existence are controlla-
bility, observability and Lm(G)-closure.

Definition 1 [12] Consider the languages K and M such that M = M and
the set of uncontrollable events Σuc. The language K is controllable with
respect to M and Σuc if

KΣuc ∩ M ⊆ K. (1)

The concept of controllability implies that for a set of generated system be-
haviors M , a set of marked specification behaviors K and for every possible
occurrence of illegal behavior, a controller has sufficient actuation to pre-
vent that behavior from occurring. That is, if there is an event σ such that
K ⊂ Kσ ∩ M , then σ ∈ Σc.

Definition 2 [10] Consider the languages K and M such that M = M and
the sets of controllable, Σc, and observable Σo events. The language K is
observable with respect to M , P (·) and Σc if for all t ∈ K and for all σ ∈ Σc,

[
(

tσ /∈ K
)

∧ (tσ ∈ M)] ⇒
(

P−1 [P (t)] σ ∩ K = ∅
)

. (2)
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The concept of observability captures the notion that for a set of generated
system behaviors M and a set of marked specification behaviors K, that for
every possible string of behavior tσ ∈ M such that σ is controllable, t is
legal, but tσ is not, then there must be no control conflict associated with a
controller’s estimate of disabling σ. That is, P−1 [P (t)] σ must not contain
a string t′σ that is legal but indistinguishable from tσ with respect to the
sensor selection Σo.

Definition 3 Consider the sets of languages K and M . The set K is M -
closed if

K = K ∩ M. (3)

The concept of M -closure implies that the generated behavior K in a spec-
ification is marked if the behavior is marked in the system behavior M .

The above definitions of controllability, M -closure and observability are
central to the following controller existence theorem called the controllability
and observability theorem.

Theorem 1 [10] For a finite state automaton system G, a finite state au-
tomaton specification H such that Lm(H) ⊆ Lm(G), a set of controllable
events Σc and a set of observable events Σo, there exists a partial observa-
tion controller S such that Lm(S/G) = Lm(H) and L(S/G) = Lm(H) if
and only if the following three conditions hold:

1. Lm(H) is controllable with respect to L(G) and Σuc.

2. Lm(H) is observable with respect to L(G), Σo and Σc.

3. Lm(H) is Lm(G)-closed.

For languages generated by deterministic automata, controllability and
Lm(G)-closure can be decided in polynomial time using standard automata
manipulation operations. There is a construction presented in [19] for de-
ciding the observability of languages generated by deterministic automata
in polynomial time. The essence of this method is that a machine M is
constructed from a system G, a specification automata H, the controllable
events Σc and the observable events Σo, such that Lm(M) = ∅ if and only
if the Lm(H) is observable with respect to L(G), Σo and Σc.

A less restrictive version of Theorem 1 also holds for the case of generated
language specifications (and hence prefix-closed marked language specifica-
tions) where the Lm(G)-closure condition is disregarded.
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2.2 Theory of Computation

In the field of computation theory a problem instance is said to be a “decision
problem” if all problem instances are mapped to be either “true” or “false”.
In the set of decision problems, a problem is said to be in class P if it can
be decided in polynomial time using a deterministic computation device
and it is said to be in NP if it can be decided in polynomial time using a
nondeterministic computation device. Although it is not known for sure, it
is generally believed that the class NP is distinct from the class P. Therefore,
it is believed that not all decision problems can be solved efficiently in time.

In addition to the above classes of decision problems, DTIME(f(n)) is
the set of all problems that can be solved by deterministic algorithms with
time complexity in O(f(n)). Using standard computer science notation, n
is the size of the encoding of the problem instance. Of interest is the class
DTIME(npolylog n). It is believed that NP 6⊆ DTIME(npolylog n), but
this has not been proved [1].

Similar to decision problems, there is a set of problems called optimiza-
tion problems. Each optimization problem has a set of problem instances
P, a set of feasible solutions Fp for a problem instance p ∈ P and a cost
function costp : Fp → ℜ that maps the set of feasible solutions of a prob-
lem instance to a real value that is a measure of the desirability of that
solution. The solution to an instance of an optimization problem is the
minimal cost solution for that problem instance, i.e., F (p) ∈ Fp such that
∀f ∈ Fp, costp(F (p)) ≤ costp(f).

The set of feasible solutions to the optimization problem may be finite,
countably infinite or a subset of the real numbers. Similar to decision prob-
lems, there are the PO and NPO optimization problem classes where an
optimization problem is said to be in PO if an optimal solution can be cal-
culated in polynomial time using a deterministic computation device and it
is said to be in NPO if an optimal solution can be computed in polynomial
time using a nondeterministic computation device.

There are several important optimization problems in NPO that are
believed to not be in PO. Please see the compendium in [2] for an exten-
sive listing of these problems. However, even though some optimization
problems can most likely not be solved in polynomial time, it may still be
possible to reasonably calculate approximate solutions to these problems in
polynomial time with reasonably good bounds on the performance of the
approximation. Naturally, the solutions to some problems may be more dif-
ficult to approximate than the solutions to other problems. The concept of
an r-approximation, shown in Definition 4 below captures this property.
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Definition 4 [2] For a problem instance p ∈ P of an optimization problem,
let A be an algorithm that such that when given p as input, A returns an ap-
proximate solution A(p) ∈ Fp for that problem instance. The approximation
algorithm A(p) is r-approximate if

∀p ∈ P

(

cost(A(p))

cost(F (p))
≤ r

)

. (4)

Conceptually, the r in an r-approximation is the maximum known ratio
between the cost of the optimal solution cost(F (p)) and the approximation
found by an algorithm, A(p). The ratio r may be some function on the size
of the problem instance.

3 The Sensor Selection Problem

Before the sensor selection problems are introduced some important concepts
are defined.

Definition 5 A set Σo ⊆ Σ is called a sufficient sensor selection with respect
to G, H and Σc if L(H) is observable with respect to L(G), Σo and Σc.

Note that with Definition 5 and Theorem 1, if Σo is a sufficient sensor
selection and L(H) is controllable with respect to L(G) and Σc, then there
exists an admissible controller S such that L(S/G) = L(H). It is generally
assumed in this paper that L(H) is always controllable with respect to L(G)
and Σc.

It may be possible that there is a positive cost function cost : Σ →
ℜ+ ∪ {0} such that cost(σ) represents the cost associated with a controller
being able to observe occurrences of the event σ in the system. This cost
function can be extended in the usual manner to be defined over sets of
events. Formally, for a set of events Σo ⊆ Σ define

cost(Σo) =
∑

σ∈Σo

cost(σ). (5)

When given a system G, a specification H and a set of controllable events
Σc, it may be desired to find the lowest cost sufficient sensor selection Σo in
order to ensure that there exists a controller S such that L(S/G) = L(H).
This prompts the formal definition of the minimal cost sufficient sensor
selection problem.
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Problem 1 Minimal Cost Sensor Selection: Given G, H, Σc ⊆ Σ and a cost
function cost : Σ → ℜ+ ∪ {0}, find a sufficient sensor selection Σmin

o such
that for any other sufficient sensor selection Σo, cost(Σmin

o ) ≤ cost(Σo).

A simple example of the sensor selection problem is now shown.

Example 1 Consider the system and specification seen in Figure 2. Sup-
pose that Σc = {α}. There are several sufficient sensor selections for this
specification with respect to the given system: {α}, {β, γ}, {γ, λ}, {β, λ}.

β β

γ λ

γ

λ

α
1 2 3 4 5

α

β β

γ λ

γ

λ

1 2 3 4 5

H:

G:

6
α

Figure 2: The system G and specification H of Example 1.

Now suppose that the cost of using the sensors is non-uniform, such that

cost(α) = 7, cost(β) = 4, cost(γ) = 5, cost(λ) = 2.

With these sensor costs, the minimal cost sensor selection is {β, λ}.

There is a special case of Problem 1 where the sensors have uniform
cost and the cost minimization problem becomes a cardinality minimization
problem.

Problem 2 Minimal Cardinality Sensor Selection: Given G, H and Σc ⊆
Σ, find a sufficient sensor selection Σmin

o such that for any other sufficient
sensor selection Σo, |Σ

min
o | ≤ |Σo|.
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A simple example of Problem 2 is now shown.

Example 2 Consider the system and specification seen in Figure 2. Sup-
pose that Σc = {α}. There are several sufficient sensor selections for
this specification with respect to the given system: {α}, {β, γ}, {γ, λ}, {β, λ}.
However, {α} is the minimal cardinality sufficient sensor selection.

Because of the NP-completeness of Problem 2, the minimal cardinal-
ity sensor selection cannot always be found in a computationally efficient
manner [21]. This result therefore shows that Problem 1 is similarly com-
putationally difficult.

However, despite the computational difficulties of the sensor selection
problems, a sufficient sensor selection Σo may still need to be found rea-
sonably efficiently such that the cost of this sensor selection (cost(Σo)) is
as close to the minimal cost sensor selection (cost(Σmin

o )) as possible. For-
tunately, as mentioned above, some NP-complete minimization problems
have fairly accurate polynomial time approximation algorithms [2, 20]. This
means sufficient and approximate solutions can be found for many compu-
tationally difficult problems in a reasonable amount of time. However, to
the best of the authors’ knowledge, there has been no investigation into the
approximation difficulty of sensor selection problems.

4 The Graph Cutting Problem

It was mentioned above that the observability of languages marked by finite
state automata can be tested using a nondeterministic automata construc-
tion introduced in [19]. This construction can be used to convert sensor
selection problems into a special type of graph cutting problem called an
“edge colored directed graph st-cut problem”.

For the edge colored directed graph st-cut problem, assume an edge
colored directed graph D = (V, A, C) is given where V is a set of vertices,
A ⊆ V × V are directed edges and C = {c1, . . . , cp} is a set of colors.
Each edge is assigned a color in C. The directed graph in Figure 3 is an
example of an edge colored directed graph where the edges are assigned
colors {α, β, γ, λ}.

Let Ai be the set of edges having color ci. Given I ⊆ C, let AI = ∪ci∈IAi.
For two nodes s, t ∈ V such that there is a path of directed edges from s to
t, I is a colored st-cut if (V, (A \ AI), C) has no path from s to t. As seen
in Figure 4, I = {β, γ} is a colored st-cut for the graph in Figure 3.

It is also possible that the various edge colors might have a non-uniform
cost function cost : C → ℜ+ ∪ {0} associated with using that color in a
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β
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λ
λ

β

γβ

α

α

Figure 3: An example of an edge colored directed graph.

γ

β

γ

β

ts

λ
λ

β

α

α

Figure 4: The colored cut I = {β, γ} for the graph in Figure 3.

colored cut. The cost function can be extended in the usual manner to be
defined over sets of colors. That is, for C1 ⊆ C, cost(C1) =

∑

c∈C1
cost(c).

This cost function induces the minimal cost colored cut problem seen below.

Problem 3 Minimal Cost Colored Cut: For an edge colored directed graph
D = (V, A, C), two vertices s, t ∈ V , and a cost function cost : C → ℜ+ ∪
{0}, find a colored st-cut Imin ⊆ C such that for any other colored st-cut
I ⊆ C, cost(Imin) ≤ cost(I).

Similar to the Minimal Cost Sensor Selection Problem, the Minimal Cost
Colored Cut problem has a special case where cost(·) is a constant function.

Problem 4 Minimal Cardinality Colored Cut: For an edge colored directed
graph D = (V, A, C), two vertices s, t ∈ V , find a colored st-cut Imin ⊆ C
such that for any other colored st-cut I ⊆ C, |Imin| ≤ |I|.
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In the following subsections it is shown how to convert colored cut prob-
lems into sensor selection problems and vice-versa.

4.1 Converting Colored Cut Problems into Sensor Selection

Problems

It is now shown how to convert an instance of a minimal cost colored cut
problem into an instance of a minimal cost sensor selection problem. Sup-
pose an edge colored directed graph D = (V, A, C), two vertices s, t ∈ V
and a cost function cost : C → ℜ+ ∪ {0} are given. A system G, a spec-
ification H and a controllable event set Σc are now constructed from D.
For the colors C = {c1, . . . , cp}, let the event set Σ include a corresponding
set of events {σ1, . . . , σp} such that every color ci ∈ C is paired with event
σi. Let γ be another event and define Σ = {σ1, . . . , σp, γ}. Also define
XG = V ∪ {s′, s′′, t′} where s′, s′′, t′ are states not in V . Let xG

0 = s. To
define the state transition function, let v1, v2 be any vertices except s. If
(v1, v2) ∈ Ai, then v1

σi7→Gv2. If (s, v2) ∈ Ai, then s
σi7→Gv2 and s′′

σi7→Gv2. If

(v1, s) ∈ Ai, then v1
σi7→Gs′′. For simplicity it is assumed that (s, s) 6∈ A.

Also, transitions are added such that s
γ
7→Gs′ and t

γ
7→Gt′. Let H be a copy

of G except that δH(t, γ) is undefined. Let Σc = {γ}. For the definition of
the cost function assign

∀i ∈ {1, . . . , p}cost(σi) = cost(ci).

An example of such a system construction for converting a directed graph
D to a system and specification G and H is given in Figure 5.

The following theorem demonstrates the correctness of the construction.

Theorem 2 Consider a edge colored directed graph D = (V, A, C) with a
system G and a specification H constructed from it as outlined above. A set
of colors I = {ca, . . . , cz} is a colored st-cut for D if and only if selecting the
observable events Σo = {σa, . . . , σz} corresponding to I makes the system G
observable with respect to H.

Proof: This proof is demonstrated in two parts. First, suppose that I =
{ca, . . . , cz} is a colored st-cut for D. Then, for any path from s to t in
D, there is an edge colored by one of the colors in I. Therefore, due to the
construction of G and H, for any path from s to t in G, there is a state
transition labeled by an event in {σa, . . . , σz} and any path from s to t in G
and H does not return to s after initialization. According to H, the event
γ should be enabled at initialization and should be disabled at state t. Due
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β

α

α

αα

αα

α

βG:
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α

D:

β

β

γγ γ

Figure 5: A directed graph D and the systems G and H constructed from
it.

to the fact that for every path from s to t in G there is a state transition
labeled by an event in {σa, . . . , σz} and any path from s to t in G and H
does not return to s after initialization. Therefore, if events in {σa, . . . , σz}
are observable, then there is no control conflict when γ needs to be disabled.
Hence, selecting the observable events Σo = {σa, . . . , σz} corresponding to
I makes the system G observable with respect to H.

Now suppose that I = {ca, . . . , cz} is not a colored st-cut for D. Then,
there is a path from s to t in D with no edge colored with a color in I.
Therefore, due to the construction of G and H, there is a path from s to t in
G with no state transitions labeled by events in {σa, . . . , σz}. Hence, if only
the events in {σa, . . . , σz} are observable, then there is a path from s to t
in G such that when γ should be disabled at t, a controller would not know
for sure that γ should be disabled. Consequently, selecting the observable
events Σo = {σa, . . . , σz} corresponding to I does not make the system G
observable with respect to H.

Σo = {σa, . . . , σz} corresponding
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4.2 Converting Sensor Selection Problems into Colored Cut

Problems

The construction is now shown to convert an instance of Problem 1 into an
instance of Problem 3. Suppose H = (XH , xH

0 , Σ, δH), G = (XG, xG
0 , Σ, δG),

Σo and Σc are given and it is desired to test if L(H) is observable with re-
spect to L(G), Σo and Σc. This is done by constructing an automaton

MΣo = (XMΣo , x
MΣo

0 , ΣMΣo , δMΣo ) that is a modification of M automa-
ton method for testing observability and co-observability in [18, 19]. The
MΣo automaton is effectively a nondeterministic simulation of estimates
an observer may make of unobservable system behavior with respect to a
specification based on imperfect predictions of occurrences of unobservable
events (Σ \ Σo) in the system.

Let Σ′ be a copy of the event set Σ where for every event σ ∈ Σ, there
is a corresponding event σ′ ∈ Σ′. The following are then defined:

XMΣo := XH × XH × XG ∪ {d},

x
MΣo

0 := (xH
0 , xH

0 , xG
0 ),

ΣMΣo := Σ ∪ Σ′.

Suppose a string of events s has been simulated to occur in the system
G by MΣo and the simulation is at state (x1, x2, x3) ∈ XMΣo . State x3 rep-
resents the true state of the system G and x2 represents the corresponding
state of the specification H after s has occurred. States x2 and x3 always up-
date simultaneously. However, as was stated above, the observer attempts to
predict the occurrence of system events and the state x1 represents a possible
observer estimate of the specification state based on imperfect predictions
of the simulated system behavior due to the observation of P (s).

At state (x1, x2, x3) of the simulation, if an event σ is correctly predicted
by the observer in the simulation, there is a transition from (x1, x2, x3)
labeled by σ where all of the component states of (x1, x2, x3) update on the
occurrence of σ according to the transition rules of H, H and G respectively.
A correct prediction may occur for either observable or unobservable events.

However, if an event σ occurs in the system that is not predicted cor-
rectly by the observer in the simulation, there is a transition from (x1, x2, x3)
labeled by σ′ where the x2, x3 component states of (x1, x2, x3) update on the
occurrence of σ according to the transition rules of H and G respectively.
Similarly, if an event σ does not occur in the system but is incorrectly pre-
dicted to have occurred by the observer in the simulation, then there is a
transition from (x1, x2, x3) labeled by σ′ where the x1 component state of
(x1, x2, x3) updates on the occurrence of σ according to the transition rules
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of H. Therefore, because unobservable event occurrences can not be guar-
anteed to be perfectly predicted, the MΣo simulation is nondeterministic.

If the MΣo simulation ever reaches a composed state where the observer
believes the occurrence of a controllable event is allowed by the specification
due to the properties of state x1, but in reality it is not due to specification
state x2, yet still possible due to system state x3, then there is a control
conflict as the observer would believe a controllable event is illegal when in
reality it is not. This possibility is captured by the (∗) condition such that
if the simulation could reach a state (x1, x2, x3) where (∗) holds, then illegal
controllable behavior could occur in the system without an observer being
able to resolve the control conflict.

δH(x1, σ) is defined if σ ∈ Σc

δH(x2, σ) is not defined
δG(x3, σ) is defined







(∗)

The nondeterministic transition relation δMΣo is now more formally defined
as follows.
For σ′ ∈ Σ′ such that for the corresponding σ ∈ Σ, σ 6∈ Σo:

δMΣo ((x1, x2, x3), σ
′) =

{

(δH(x1, σ), x2, x3) if δH(x1, σ)!
(x1, δ

H(x2, σ), δG(x3, σ)) if (δH(x2, σ)! ∧ δG(x3, σ)!)

}

.

For σ ∈ Σ,

δMΣo ((x1, x2, x3), σ) =














(δH(x1, σ), δH(x2, σ), δG(x3, σ)) if





δH(x1, σ)!∧
δH(x2, σ)!∧
δG(x3, σ)!





d if (∗)















.

No other transitions are defined in MΣo . The notation is used such that
δH(x, σ)! is true if δH(x, σ) is defined and false otherwise. A similar def-
inition holds for δG(x, σ)!. Note that because MΣo is nondeterministic,
δMΣo (·, ·) possibly returns a set of states.

The MΣo automaton here is modified from the original in [19] in that Σ′

transitions replace some Σ transitions. The σ′ ∈ Σ′ transitions correspond
to transitions that would not exist if σ ∈ Σ \ Σo were made observable.
The MΣo automaton construction prompts the following proposition which
follows from the results in [19].
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Proposition 1 [19] The state d is not reachable in MΣo if and only if L(H)
is observable with respect to L(G), Σo and Σc.

An example is now given of an MΣo automaton construction.

Example 3 Recall the system and specification shown in Example 1. The
M∅ automaton constructed for this system and specification with Σc = {α}
can be seen in Figure 6.

d

α′ α′ α′

α′
1,1,1 1,2,2 1,3,3 1,4,4 1,5,5β′, λ′ γ′, λ′

α′
2,1,1 2,2,2 2,3,3 2,4,4 2,5,5β′, λ′ γ′, λ′

α′
3,1,1 3,2,2 3,3,3 3,4,4 3,5,5β′, λ′

α′
4,1,1 4,2,2 4,3,3 4,4,4 4,5,5β′, λ′ γ′, λ′

α′
5,1,1 5,2,2 5,3,3 5,4,4 5,5,5β′, λ′

γ′, λ′

β′, γ′ β′, γ′ β′, γ′

γ′, λ′

β′, λ′ β′, λ′ β′, λ′ β′, λ′

γ′, λ′ γ′, λ′ γ′, λ′

γ, λ

M∅:

α′

β′, γ′

β′, γ′

β′, γ′

β′, γ′

β′, γ′

β, γ

β, λ

γ′, λ′

α

β′, γ′

β′, γ′

β′, λ′

γ′, λ′

α′

α

Figure 6: The M∅ machine constructed from G and H of Example 1.

The behavior of MΣo nondeterministically simulates an observer’s esti-
mate of a system’s behavior with respect to a specification. As was men-
tioned above, a Σ transition occurs in MΣo if an event occurrence in G
is correctly predicted by the observer, and a Σ′ transition occurs if the
prediction is not correct. Therefore, if an event is observed, it is predicted
correctly and σ′ transitions in MΣo would be removed if σ were made observ-
able. This implies that MΣo∪{σ} can be constructed from MΣo by cutting
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all σ′ transitions, and conversely, cutting all occurrences of σ′ transitions in
MΣo corresponds to adding σ to Σo. This realization prompts the following
lemma.

Lemma 1 The automaton MΣo can be constructed from M∅ by cutting Σ′
o

labeled transitions in M∅.

Proof: This lemma is shown by a proof by induction on the cardinality of
Σo.

Base: Suppose Σo = ∅. This case is trivial as MΣo = M∅.
Induction hypothesis: For |Σo| = n, the MΣo automaton can be con-

structed from M∅ by cutting Σ′
o labeled transitions in M∅.

Induction step: Let |Σo| = n. From the induction hypothesis it is known
that the MΣo automaton can be constructed from M∅ by cutting Σ′

o labeled
transitions in M∅.

Let σ be some event in Σ \ Σo. From the construction of MΣo and
M(Σo∪{σ}), the only difference in the transition structure of these two au-
tomata is that transitions labeled by σ′ are absent in M(Σo∪{σ}). Therefore
the M(Σo∪{σ}) automaton can be constructed from MΣo by cutting all σ′

labeled transitions in MΣo . Hence, the M(Σo∪{σ}) automaton can be con-
structed from M∅ by cutting Σ′

o ∪ {σ′} labeled transitions in M∅.

Lemma 1 shows that the sensor selection problem is really a type of
colored cut problem. Suppose the automaton M∅ is considered to be an edge
colored directed graph as introduced above such that the transition labels
are defined to be edge colors and the cost of cutting all edges associated
with a color is defined to be the cost of making the corresponding event
observable. A colored x

M∅

0 d-cut for M∅ where only Σ′ transitions are cut
corresponds to a sufficient sensor selection for observability to hold. This
prompts the following theorem.

Theorem 3 L(H) is observable with respect to L(G), Σo and Σc if and only

if Σ′
o ⊆ Σ′ is a colored x

M∅

0 d-cut for M∅.

Proof: This proof is demonstrated in two parts. Suppose that L(H) is
observable with respect to L(G), Σo and Σc. Therefore d is not reachable
in MΣo . From Lemma 1 the automaton MΣo can be constructed from M∅

by cutting Σ′
o labeled transitions in M∅. Hence, Σ′

o is a colored x
M∅

0 d-cut
in M∅.

Now suppose that L(H) is not observable with respect to L(G), Σo and
Σc. Therefore d is reachable in MΣo . From Lemma 1 the automaton MΣo

18



can be constructed from M∅ by cutting Σ′
o labeled transitions in M∅. Hence,

Σ′
o is a not a colored x

M∅

0 d-cut in M∅.

The M∅ cut problem is not in the same form as in Problem 3 or Problem
4 as Σ labeled transitions can never be cut in the M∅ automaton of The-
orem 3 by making events observable. To counter this difference the M̃Σo

construction below is used which is a copy of MΣo except that some states
are combined to hide Σ transitions in M∅.

To start, construct MΣo from H, G, Σc and Σo. Define:

X
MΣo
x =

{

yMΣo |∃t ∈ Σ∗ such that xMΣo
t
7→MΣo

yMΣo

}

.

Notice the x subscript on X
MΣo
x . The set X

MΣo
x represents all states that

could be reached from xMΣo in MΣo if only Σ transitions were allowed.
These are the same transitions in MΣo that could not be cut by making

more events observable. Due to this, the states in X
MΣo
x would be reachable

from xMΣo according to the transition rules of MΣo no matter what events
are made observable.

With this in mind, the following nondeterministic automaton M̃Σo is
constructed from MΣo such that if there are two states xMΣo , yMΣo and
some string of transitions labeled by sσ′ ∈ Σ∗Σ′ such that according to the

transition rules of MΣo , xMΣo
sσ′

7→MΣo
yMΣo , then according to the transition

rules of M̃Σo , xMΣo
σ
7→M̃Σo

yMΣo where xMΣo and xMΣo are states in both

MΣo and M̃Σo , but with different outgoing state transitions in the two
automata. This construction effectively condenses all MΣo states reachable
by Σ transitions abd replaces the remaining Σ′ labels with the corresponding

Σ labels. However, it is assumed that d 6∈ X
MΣo
x0 because if d ∈ X

MΣo
x0 , then

even if a controller could observe the occurrences of all events (Σo = Σ), the
system could not be made observable in any case.

Let M̃Σo = (XM̃Σo , x
M̃Σo

0 , ΣM̃Σo , δM̃Σo ) where

XM̃Σo := XH × XH × XG ∪ {d},

x
M̃Σo

0 := (xH
0 , xH

0 , xG
0 ),

ΣM̃Σo := Σ.

The transition relation δM̃Σo is defined as follows.
Suppose there exists three states xMΣo , yMΣo , zMΣo ∈ XMΣo and an
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event σ ∈ Σ such that zMΣo ∈ X
MΣo
x and zMΣo

σ′

7→MΣo
yMΣo . Then,

δM̃Σo (xMΣo , σ) =

{

yMΣo if d 6∈ X
MΣo
y

d if d ∈ X
MΣo
y

}

.

An example is now given of an M̃Σo automaton construction.

Example 4 Recall the system and specification shown in Example 1 and
the resulting MΣo automaton seen in Figure 6. The corresponding M̃∅

automaton constructed for this system and specification with Σc = {α} can
be seen in Figure 7.

d

α β, λ γ, λβ, γ

α β, λ γ, λβ, γ

αα α α α

α β, λ γ, λβ, γ

2,1,1 2,2,2 2,3,3 2,4,4 2,5,5

3,1,1 3,2,2 3,3,3 3,4,4 3,5,5

4,1,1 4,2,2 4,3,3 4,4,4 4,5,5

5,1,1 5,2,2 5,3,3 5,4,4 5,5,5

M̃∅:

α

β, γ

γ, λ γ, λ γ, λ γ, λ

γ, λ

β, λ β, λ β, λ

β, λ γ, λ

γ, λ

β, λ

β, γ
β, γβ, γ

β, λ

γ, λ

β, λ

γ, λ

β, γ
β, λβ, γ

γ, λ

β, λ

α β, λ γ, λβ, γ

β, γ

α β, λ γ, λβ, γ

γ, λ

β, γ

1,3,3 1,4,4 1,5,51,2,21,1,1

Figure 7: The M̃∅ machine constructed from G and H of Example 1.

The M̃Σo automaton is really a colored directed graph where states
are vertices, transitions are directed edges and the transition labels are the
colors. This prompts one of the main results of this chapter.
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Theorem 4 Given an M̃∅ automaton constructed from H, G, Σc and ∅ as
the set of observable events, L(H) is observable with respect to L(G), Σo

and Σc if and only if Σo is a colored x
M̃∅

0 d-cut in the colored directed graph
M̃∅.

Proof: It has already been shown that L(H) is observable with respect

to L(G), Σo and Σc if and only if Σ′
o is a colored x

M∅

0 d-cut in the colored
directed graph M∅. Therefore it is sufficient to show that Σo is a colored

x
M̃∅

0 d-cut in the colored directed graph M̃∅ if and only if Σ′
o is a colored

x
M∅

0 d-cut in the colored directed graph M∅.
Define a natural projection operation P ′ : Σ ∪ Σ′ → Σ′. Also define

the translation operator Ψ̃ : Σ′ → Σ such that Ψ̃(σ′) = σ. Both of these
functions are extended in the usual manner to be defined over strings. Also
define the function P̃ : Σ∪Σ′ → Σ that is the composition of P ′(·) and Ψ̃(·),
i.e., P̃ (σ) = Ψ̃(P ′(σ)). These functions also have inverse operations defined
in the usual manner.

First, suppose that Σ′
o is not a colored x

M∅

0 d-cut in the colored directed
graph M∅. Then there exists a string of transitions labeled by s ∈ (Σ∪Σ′)∗

such that x
M∅

0
s
7→M∅

d. Due to the construction of M̃∅, x
M̃∅

0

P̃ (s)
7→ M̃∅

d.

Now suppose that Σ′
o is not a colored x

M̃∅

0 d-cut in the colored directed
graph M̃∅. Then there exists a string of transitions labeled by s ∈ Σ∗ such

that x
M̃∅

0
s
7→M̃∅

d. Due to the construction of M̃∅, there exists some string

t ∈ P̃−1(s) such that x
M∅

0
t
7→M∅

d.

By the definition of NP-completeness there exists polynomial-time many-
one reductions between the graph cutting and sensor selection problems.
However, one of the main reasons the reductions between these problems
are demonstrated is to show that approximation algorithms developed for
one problem can be easily and intuitively used to develop approximation
algorithms for the other.

Due the construction of the MΣo automaton, it should be apparent that
|XMΣo | ≤ |XG| ∗ |XH |2 + 1. Furthermore, at each state xM

Σo
∈ XM

Σo
, the

number of outgoing state transitions is at most three times the maximum
number of outgoing state transitions in any state of G or H. If EG is the set
of state transitions in G and EH is the number of state transitions in H, let
e = max{|EG|, |EH |}. Therefore MΣo can be constructed in time and space
in O(e ∗ |XG| ∗ |XH |2) using standard breadth-first digraph construction
algorithms. Therefore, because reachability can be tested in polynomial
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time, the observability of L(H) with respect to L(G), Σo and Σc can be
tested in polynomial time [19].

5 Inapproximability Results

To the knowledge of the authors, the egde colored directed graph cutting
problem has not been explored in the standard literature (from graph theory
or computer science). Unfortunately, although many other types of graph
cutting problems are computationally simple, it is shown here that solutions
to Problem 4 are most likely difficult to approximate. Because of the above
results, solutions to the sensor selection problem are similarly difficult to
approximate.

Consider a bipartite graph K = (V1, V2, E) where the sets V1 and V2 are
partitioned into a disjoint union of q sets, V1 = ∪q

i=1Yi and V2 = ∪q
j=1Zi.

The sets {Y1, Z1, . . . , Yq, Zq} all have size N . E is the set of edges in K.
The bipartite graph and the partitions of V1 and V2 induce a super-graph
H where the vertices of H are the sets {Y1, Z1, . . . , Yq, Zq}. Yi and Zj are
connected by a (super)edge in H if and only if there exists (a, b) ∈ Yi × Zj

that are adjacent in K. For the purpose of this paper, it is convenient to
assume that H is d-regular. Namely, every Yi, Zj has exactly d neighbors in
the super-graph.

Given X ⊆ V1 ∪V2, it is said that the super-edge (Yi, Zj) in H is covered
by X if there exists two nodes a ∈ X∩Yi and b ∈ X∩Zj such that (a, b) ∈ E.
The MIN-REP problem can now be formally introduced.

Problem 5 MIN-REP: Given a bipartite graph K as introduced above, find
a subset X of minimum size covering all super-edges of H.

The subset X∩Yi is referred to as the representatives of Yi in X (similarly
for Zj). The set X is said to be a set of unique representatives if |X∩Yi| = 1
and |X ∩ Zj | = 1 for all i, j.

In addition the following result from [9] is needed that shows the ap-
proximation difficulty of Problem 5. Consider the following theorem based
on the well-known satisfiability problem (SAT) from computer science.

Theorem 5 [14]. Let T be an instance of SAT. For any 0 < ǫ < 1, there
exists a (quasi-polynomial) reduction of T to K, an instance of MIN-REP
with n vertices so that if T is satisfiable, then there exists a set of unique
representatives which cover all super-edges. If T is not satisfiable, then the
size of any MIN-REP solution has at least 2q2(log n)1−ǫ

vertices.

22



In the reduction in Theorem 5, if T is not satisfiable, then the average
number of representatives needed per super-node is Ω(2(log n)1−ǫ

). Also, n is
quasi-polynomial in the size of the SAT formula. This is used in [9] to show
the approximation difficulty of the MIN-REP problem.

Theorem 6 [9]. The MIN-REP problem admits no 2(log n)1−ǫ

approxima-

tion for any ǫ > 0 unless NP ⊆ DTIME(npolylog n).

A conversion of an instance of the MIN-REP problem, K = (V1, V2, E),
to an instance of the minimal cardinality colored cut problem, D = (V, A, C),
can now be shown that establishes a similar connection between SAT and the
colored cut problem and ultimately the sensor selection problem. For sim-
plicity, it is assumed that D may be a multi-graph, but by using a standard
trick of subdividing edges, this assumption can be removed. The directed
graph D is constructed in three parts.

Let n = |V1|+ |V2| be the number of vertices in the MIN-REP instance.
First construct the vertices V of D. Add two nodes s and t to V . The
rest of the vertices are associated with super-edges. Go over all super-edges
ẽ = (Yi, Zj). For this super-edge the following vertices are added. Let the
edges between Yi, Zj be {e1

ij , . . . , eb
ij} where ek

ij = (yk, zk), yk ∈ Yi and

zk ∈ Zj . Also add the vertices xk
i,j , 1 ≤ k ≤ b + 1.

Now construct the edges A. For every i, j, add two parallel edges from
x1

ij to x2
ij , two parallel edges from x2

ij to x3
ij and so on until xb+1

ij is reached.

This construction of edges from x1
i,j to xb+1

i,j is called the chain of super-edge
eij . Observe that there is one chain associated with Zj for every Yi adjacent
to it.

Also, add n3 parallel edges e1
i,j , . . . , en3

i,j from s into x1
i,j (the first vertex

in the chain). This is done for all i, j. Similarly, for the end of the chain,
add n3 parallel edges d1

i,j , . . . , dn3

i,j from xb+1
i,j into t.

Finally the edges of D are colored. For each y ∈ Yi, z ∈ Zj let there be
colors cy and cz. For the paired edges ek

ij = (yk, zk) used to construct the

chains, color one of the edges (xk
ij , x

k+1
ij ) in the chain cyk and the other czk .

The edges touching s and t are colored new distinct colors. An example of
the construction can be seen in Figure 8 for the case of q = 1.

Now that the construction has been shown, it is discussed why this
demonstrates that the minimal cardinality colored cut problem is difficult
to approximate. Consider a super-edge eij = (Yi, Zj) and its chain. Let I
be any feasible colored st-cut of D.
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dn3
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1,1

en3

1,1

e1
1,1

cd ce cfcf

K: Y1 Z1

Figure 8: Conversion of a MIN-REP problem to a graph cutting problem
when q = 1.

Lemma 2 There exists at least one parallel pair of edges in the chain cor-
responding to eij so that I contains both colors corresponding to this parallel
pair of edges.

Proof: Suppose that for each pair of parallel edges, at most one color is
in I. This implies that even with I colored edges, there is a path from all
xk

i,j , 1 ≤ k ≤ b + 1 vertices to xb+1
i,j . Because s has n3 parallel edges to x1

i,j ,

all having different colors, it is too costly to disconnect x1
i,j from s. (Observe

that the solution picking all the cz, cy colors for all y, z is feasible and has
size n2, hence an approximation ratio of better than n can not disconnect
x1

i,j from s.) Similarly, it is too costly to disconnect t from xb+1
i,j . Thus, if

there is not a pair of parallel edges both cut in every chain, then I is not an
st-cut because a directed path from s to t exists.

Let I be a colored st-cut for the minimal cardinality colored cut problem
constructed above.

Corollary 1 Let X be the vertices corresponding to the colored cut I. X is
a feasible solution to the MIN-REP problem and |X| = |I|.

Proof: Consider a super-edge (Yi, Zj). There is a parallel pair of edges such
that its colors are in I by Claim 2. The color of each edge corresponds to
some vertex y ∈ Yi and z ∈ Zj such that (y, z) ∈ E. Hence, I defines in a
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natural way a collection X ⊆ V that is a solution for MIN-REP. Therefore,
the X collection covers all the super-edges. Furthermore, the number of
colors equals the number of vertices from X.

Lemma 3 Given any MIN-REP solution X for K, a subset I of |X| colors
can be found that solves the minimal cardinality colored cut problem con-
structed from K.

Proof: Given that x ∈ X, this defines a color cx corresponding to x in the
construction. Let I be the collection of all these colors. It is shown that I
is a feasible solution for D.

Let eij = (Yi, Zj). Consider the chain of eij . As eij is covered by X,
there are y ∈ X ∩ Yi and z ∈ Zj so that (y, z) ∈ E. By definition, there is a
parallel pair of edges on this chain from xk

ij corresponding to (y, z) and its
colors are in I. The cutting of edges colored cy and cz cuts both of these
parallel edges from D. It follows that there cannot be a path through the
chain of eij to t. Since all super-edges are covered by X, it follows that
s cannot reach t after the edges colored by I are removed. Furthermore,
|I| = |X|.

The following is thus immediate.

Theorem 7 Let T be an instance of SAT. For any 0 < ǫ < 1, there exists
a (quasi-polynomial) reduction of T to D, an instance of colored cut with n
vertices so that if T is satisfiable, then there exists a set of 2q colors forming
a feasible solution to the minimal cardinality colored cut problem. If T is

not satisfiable, then any colored cut solution has at least 2q2log(1−ǫ) n colors.

Corollary 2 The minimal cardinality colored cut problem admits no
2(log n)1−ǫ

-approximation, for any ǫ > 0 unless NP ⊆ DTIME(npolylog n).

Corollary 3 The minimal cardinality sensor selection problem admits no
2(log n)1−ǫ

-approximation for any ǫ > 0 unless NP ⊆ DTIME(npolylog n).

It follows that if solutions to any of the colored cut or sensor selection
problems discussed in this paper can be approximated with better than a
2(log n)1−ǫ

-approximation, then a method for solving NP-complete problems
in quasipolynomial time has been found. This lower bound is generally con-
sidered to be a very poor lower bound in the computer science community.
Indeed, as ǫ approaches 0, then 2(log n)1−ǫ

approaches n. So far, for all prob-
lems admitting this bound, the best existing approximation known is nǫ for
some constant ǫ > 0. We show such an approximation for a special case.
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6 Algorithm for a Special Case

Now that it has been shown that colored cuts and sensor selections are in a
sense difficult to approximate, an approximation method for a special case
with a reasonable approximation bound is shown. Suppose an instance of
the minimal cardinality colored cut problem D = (V, A, C) is given with
vertices s, t ∈ V such that there are no parallel edges in the same direction.
K is a prespecified value which is optimized in the following proof.

Algorithm 1

Input: D = (V, A, C), s, t ∈ V and K, an integer.
Output: A colored st-cut I for D.
Initialize: I := ∅, a set of colors.

· As long as there is a st path of length at most K, add the colors
associated with this path to I and remove all edges in D with colors in I.

· After all paths of length at most K have been removed, let k be the
distance from s to t.

· Perform a depth-first-search to convert D to a layered directed graph
D′ of depth k.

· Let Vi denote the set of vertices at distance i from s in D′ and let
Ai denote the set of edges from Vi to Vi+1.

· Select the set of edges Aj that uses the least number of colors and
add those colors to I.

Return: I.

Theorem 8 Algorithm 1 gives a 2|V |2/3 approximation for Problem 4 where
D contains no parallel edges in the same direction.

Proof: Let Imin represent the minimal colored cut. Suppose in the first
phase of the algorithm, paths {P1, . . . , Pl} are removed. At most lK colors
are chosen during this step because there are at most K colors per path.
The colors used by the paths are disjoint, but the optimal solution needs to
remove at least one color for each path. Hence, l ≤ |Imin|. If {I1, . . . , Il}
are the colors removed by each path, then Σl

i=1|Ii| ≤ K|Imin|.
Let IAj

represent the colors cut in the last part of the algorithm. Also,

let |Ap| = mini |Ai|. It is known that Σk
i=1|Vi| < |V | where k is the distance

from s to t, k ≥ K. Also, Ai ≤ |Vi||Vi+1|. Therefore, |IAj
| ≤ |IAp | ≤ |Ap| ≤

(

|V |
K

)2
.
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The optimal solution has at least one color from this cut that is different
from the colors that have been added to I. |I| = Σl

i=1|Ii|+|IAj
| ≤ K|Imin|+

(

|V |
K

)2
. By choosing K = |V |2/3 it is easy to show with some mathematical

manipulation that |I|
|Imin|

≤ 2|V |2/3 and hence a 2|V |2/3 approximation is

obtained.

When a sensor selection problem is converted to a colored cut problem
using the conversion outlined above, methods developed to solved the col-
ored cut can be used to solve the sensor selection problem. In Algorithm
1, the restriction that D contains no parallel edges in the same direction is
generally fairly restrictive for solving many interesting sensor selection prob-
lems. However, this method is still interesting and relevant from a graph
theoretic and computer science point of view. The authors hope that by pre-
senting this algorithm further research might be spurred into approximation
algorithms for other special cases of the colored cut and sensor selection
problems. The above conversion of the sensor selection problem to the col-
ored cut problem is helpful for analysis of the sensor selection problem as
graph cutting problems are much more intuitive and this would helpfully
aid further research on these problems.

7 Integer Programming

It is now shown that another approach to approximating the minimal cost
sensor selection is to use integer programming based methods. The integer
programming problem is a general optimization problem from the field of the
combinatorial optimization that has been well explored in the literature [11].
This section discusses how to convert the minimal cost colored cut problem
to an integer programming problem. Therefore, using the reduction meth-
ods discussed above to convert the sensor selection problem into a colored
cut problem, integer programming methods can also be used for the sensor
selection problem. First the integer programming problem is introduced.

Problem 6 The Integer Programming Problem: Given a z element row
vector ~C, a y × z matrix ~A and a y element column vector ~B, find a z
element column vector ~x ∈ {0, 1}z that minimizes ~C~x subject to ~A~x ≥ ~B.

The integer programming problem is known to be NP-complete, but
there is a vast literature on calculating approximate solutions to this prob-
lem as outlined in [11, 20]. Unfortunately, the integer programming problem
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is known to be NPO-complete [2] which means that it is in the most diffi-
cult class of NP-complete optimization problems. However, because of the
problem conversion methods discussed in this section, already developed and
mature methods for the well understood integer programming can be used
to find solutions to the sensor selection problem.

7.1 Problem Conversion

It is now shown how to convert the minimal cost colored cut problem into
an integer programming problem. Suppose an edge-colored directed graph
D = (V, A, C) is given with a cost function cost : C → ℜ+ ∪ {0}. Suppose
V = {v1, v2, . . . , vnV

}, A = {a1, a2, . . . , anA
} and C = {c1, c2, . . . , cnC

}.
Without loss of generality assume that for the graph cutting problem the
task is to find the minimal cost colored v1vnV

-cut I ⊆ C.
For the colors C, let there be a set of boolean variables {bc1 , bc2 , . . . , bcnC

}
and for the set of vertices V , let there be another set of boolean vari-
ables {bv1 , bv2 , . . . , bvnV

}. For a given cut I, values can be assigned to
{bc1 , bc2 , . . . , bcnC

} such that bci
= 1 if and only if ci ∈ I. Note that by

definition,
∑nC

i=1 bci
cost(ci) is the cost of the colored cut I. For a cut I,

values are assigned to to {bv1 , bv2 , . . . , bvnV
} such that bv1 = 1, and for all

i, j ∈ {1, . . . , nV } and k ∈ {1, . . . , nC} such that if (vi, vj) ∈ Ack
, then

(bvi
= 1) ∧ (bck

= 0) ⇒ (bvj
= 1). These constraints on the assignment of

values to {bv1 , bv2 , . . . , bvnV
} can be thought of as a form of a reachability

condition. That is, for a vertex vi, if bvi
= 1, then for all vertices vj that are

reachable from vi along edges in A\AI , it must hold that bvj
= 1. Therefore,

because bv1 = 1, these constraints imply that if vj is reachable from v1 along
edges in A \ AI , then bvj

= 1.
Note that if it is necessary to assign bvnV

= 1 with the above constraints,
then I is not a v1vnV

-cut in D. However, if it is possible to assign bvnV
= 0

with the above constraints, then I is a v1vnV
-cut in D. This is demonstrated

in the following lemma. If the constraint is added that bvnV
= 0, then all

vertices vk which can reach vnV
along edges in A \ AI , it must hold that

bvk
= 0. Note that for any vertex vj not reachable from v1 with the colored

cut I, or which cannot reach vnV
with the colored cut I, the corresponding

boolean variable bvj
can be assigned arbitrarily.

Lemma 4 Suppose an edge colored directed graph D = (V, A, C) is given
along with a set of colors I ⊆ C. The set I is a v1vnV

-cut in D if and
only if there exists boolean variables {bc1 , bc2 , . . . , bcnC

} subject to bci
= 1

if and only if ci ∈ I and boolean vertex variables {bv1 , bv2 , . . . , bvnV
} can
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be assigned values such that bv1 = 1, bvnV
= 0 and for all (vi, vj) ∈ A,

((vi, vj) ∈ Ack
) ∧ (bvi

= 1) ∧ (bck
= 0) ⇒ (bvj

= 1).

Proof: First suppose that I is a v1vnV
-cut in D. Assign values to the

boolean variables {bc1 , bc2 , . . . , bcnC
} as described above. Also assign bv1 =

1, and if a vertex vi is reachable from v1 in (V, A \ AI , C), then assign 1
to bvi

. If a vertex vj is not reachable from v1 in (V, A \ AI , C), then assign
0 to bvj

. This assignment satisfies the set of conditions that bv1 = 1 and
for all (vi, vj) ∈ A, if (vi, vj) ∈ Ack

, bvi
= 1 and bck

= 0, then bvj
= 1.

Also, because I is a v1vnV
-cut in D, then vnV

is not reachable from v1 in
(V, A \ AI , C), so bvnV

= 0 is satisfied.
Now suppose that I is not a v1vnV

-cut in D. Assign values to the boolean
variables {bc1 , bc2 , . . . , bcnC

} as described above. Also assign bv1 = 1, and if
a vertex vi is reachable from v1 in (V, A \ AI , C), then assign 1 to bvi

. This
assignment is necessary and sufficient to satisfy the set of conditions that
bv1 = 1 and for all (vi, vj) ∈ A, ((vi, vj) ∈ Ack

)∧(bvi
= 1)∧(bck

= 0) ⇒ (bvj
=

1). However, because I is not a v1vnV
-cut in D, then vnV

is reachable from v1

in (V, A\AI , C), so the constraint that bvnV
= 0 cannot be satisfied if bv1 = 1

and for all (vi, vj) ∈ A, ((vi, vj) ∈ Ack
) ∧ (bvi

= 1) ∧ (bck
= 0) ⇒ (bvj

= 1).

Note that because {bc1 , bc2 , . . . , bcnC
} and {bv1 , bv2 , . . . , bvnV

} are boolean
variables, (bvi

= 1) ∧ (bck
= 0) ⇒ (bvj

= 1) holds if and only if −bvi
+ bvj

+
bck

≥ 0, bv1 = 1 holds if and only if bv1 ≥ 1 and bvnV
= 0 holds if and only

if −bvnV
≥ 0. It is now shown how to construct the matrices ~A and ~B and

a vector ~x such that ~A~x ≥ ~B if and only if the linear inequalities bv1 ≥ 1,
−bvnV

≥ 0 and for all (vi, vj) ∈ A, if (vi, vj) ∈ Ack
, then bck

− bvi
+ bvj

≥ 0
are satisfied.

First, let ~x be the boolean (nC + nV )-element column vector defined as
follows:

~x =





























bc1

bc2
...

bcnC

bv1

bv2

...
bvnV





























.
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To encode the constraints that for all (vi, vj) ∈ A, if (vi, vj) ∈ Ack
, then

bck
−bvi

+bvj
≥ 0, suppose that the edges in A are given an arbitrary ordering

and suppose without loss of generality that the mth edge corresponds to the
constraint that bckm

− bvim
+ bvjm

≥ 0. Note that the kmth entry in ~x is
bckm

, the (nC + im)th entry in ~x is bvim
and the (nC + jm)th entry in ~x is

bvjm
. Construct the (nC + nV )-element row vector ~Am such that the kmth

entry in ~Am is 1, the (nC + im)th entry in ~Am is −1, the (nC + jm)th entry
in ~Am is 1 and all other entries in ~Am are 0. Also define the variable Bm to
be 0. Note that due to construction of ~Am and Bm, ~Am~x ≥ Bm if and only
if bck

− bvi
+ bvj

≥ 0.
To encode the constraint that bv1 ≥ 1, note that the (nC + 1)th entry in

~x is bv1 . Therefore, construct the (nC + nV )-element row vector ~Av1 such
that the (nC + 1)th entry in ~Av1 is 1 and all other entries are 0. Also define
the variable Bv1 to be 1. Therefore ~Av1~x ≥ Bv1 if and only if bv1 ≥ 1.

Finally, to encode the constraint that −bvnV
≥ 0, note that the (nC +

nV )th entry in ~x is bvnV
. Therefore, construct the (nC + nV )-element row

vector ~AvnV
such that the (nC + nV )th entry in ~AvnV

is −1 and all other

entries are 0. Also define the variable BvnV
to be 0. Therefore ~AvnV

~x ≥ BvnV

if and only if −bvnV
≥ 0.

Note that ~Av1~x ≥ Bv1 ,
~AvnV

~x ≥ BvnV
and for all m ∈ {1, . . . , |A|},

~Am~x ≥ Bm if and only if bv1 ≥ 1, −bvnV
≥ 0 and for all (vi, vj) ∈ A, if

(vi, vj) ∈ Ack
, then bck

− bvi
+ bvj

≥ 0. With this in mind, define ~A and ~B
as follows:

~A =





















~A1

~A2
...

~A|A|
~Av1

~AvnV





















~B =



















B1

B2
...

B|A|

Bv1

BvnV



















.
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Due to the construction of ~A and ~B, ~Av1~x ≥ Bv1 ,
~AvnV

~x ≥ BvnV
and

for all m ∈ {1, . . . , |A|}, ~Am~x ≥ Bm if and only if ~A~x ≥ ~B. This implies the
following theorem.

Theorem 9 Suppose an edge-colored directed graph D = (V, A, C) is used
to construct ~A and ~B as described above. A set of colors I ⊆ C is a colored
v1vnV

-cut in D if and only if ~A~x ≥ ~B where bci
= 1 if and only if ci ∈ I and

~x =





























bc1

bc2
...

bcnC

bv1

bv2

...
bvnV





























.

Proof: Due to the construction of ~A and ~B, ~Av1~x ≥ Bv1 ,
~AvnV

~x ≥ BvnV

and for all m ∈ {1, . . . , |A|}, ~Am~x ≥ Bm if and only if ~A~x ≥ ~B. Due to
the constructions of ~Av1 , Bv1 ,

~AvnV
, BvnV

, and for all m ∈ {1, . . . , |A|},
~Am and Bm, ~Av1~x ≥ Bv1 ,

~AvnV
~x ≥ BvnV

and for all m ∈ {1, . . . , |A|},
~Am~x ≥ Bm if and only if bv1 ≥ 1, −bvnV

≥ 0 and for all (vi, vj) ∈ A, if
(vi, vj) ∈ Ack

, then bck
−bvi

+bvj
≥ 0. Because of Lemma 4, I is a v1vnV

-cut
in D if and only if the boolean variables in ~x are assigned values such that
bci

= 1 if and only if ci ∈ I, bv1 = 1, bvnV
= 0 and for all (vi, vj) ∈ A,

((vi, vj) ∈ Ack
) ∧ (bvi

= 1) ∧ (bck
= 0) ⇒ (bvj

= 1).

Because of Theorem 9, if the set of colors I ⊆ C corresponds to a set of
boolean variables {bc1 , bc2 , . . . , bcnC

} such that bci
= 1 if and only if ci ∈ I,

then the minimal cost colored cut problem is to find the the set I ⊆ C that
minimizes

∑nC

i=1 bci
cost(ci) subject to ~A~x ≥ ~B.

Now define the (nC + nV )-element row vector ~C as follows:

~C =
[

cost(c1) cost(c1) · · · cost(cnC
) 0 0 · · · 0 0

]

.

Note that ~C~x =
∑nC

i=1 bci
cost(ci). The above definitions imply the following

corollary of Theorem 9.

Corollary 4 For the constructions of ~A, ~B and ~C from D = (V, A, C) and
some constant k, a boolean vector ~x subject to the constraint that ~A~x ≥ ~B
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exists such that ~C~x = k if and only if there is a colored cut I ⊆ C is a v1vnV
-

cut in D subject to
∑nC

i=1 bci
cost(ci) = k where in ~x, (bci

= 1) ⇐⇒ (ci ∈ I).

An example of the construction of the integer programming matrices
from an instance of the minimal cost colored cut problem is now given.

Example 5 Consider the edge-colored directed graph seen in Figure 9.

α

α

β γ

β

λ
λβ

γ

1

2 3

4

0 5

Figure 9: An example of a colored graph.

With the directed graph in Figure 9, let:

~x =

































cα

cβ

cγ

cλ

r0

r1

r2

r3

r4

r5

































.

Suppose the edges in the directed graph in Figure 9 are given the arbitrary
ordering (0, 1), (3, 1), (0, 2), (4, 3), (1, 4), (2, 4), (2, 5), (3, 5), (4, 5). Also note
that Aα = {(0, 2), (1, 4)}, Aβ = {(0, 1), (3, 1), (4, 3)}, Aγ = {(2, 5), (4, 5)}
and Aλ = {(2, 4), (3, 5)}.

With the above ordering on the edges and the construction methods given
above, the following assignments are made to the integer programing matri-
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ces:

~A =







































0 1 0 0 1 −1 0 0 0 0
0 1 0 0 0 −1 0 1 0 0
1 0 0 0 1 0 −1 0 0 0
0 1 0 0 0 0 0 −1 1 0
1 0 0 0 0 1 0 0 −1 0
0 0 0 1 0 0 1 0 −1 0
0 0 1 0 0 0 1 0 0 −1
0 0 0 1 0 0 0 1 0 −1
0 0 1 0 0 0 0 0 1 −1
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1







































~B =







































0
0
0
0
0
0
0
0
0
1
0







































~C =
[

cost(α) cost(β) cost(γ) cost(λ) 0 0 0 0 0
]

.

8 Discussion

This paper has discussed the approximation properties of a computationally
difficult sensor selection problem in supervisory control. This sensor selec-
tion problem is shown to be related to a type of edge colored directed graph
st-cut problem not previously discussed in computer science. Solutions to
both the sensor selection and graph cutting problems are difficult to approx-
imate, but a |V |2/3 approximation algorithm is shown for a special case of
these problems. It is also shown how to convert the sensor selection and
graph cutting problems into an integer programming problem.

Note that the methods shown here to deal with the sensor selection
problem allows the control designer to force some events to be observable
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or unobservable. First, the cost function could appropriately adjusted to
force an event to be cost free to observe, or, conversely, to make an event
prohibitively expensive to observe. Secondly, during the construction of
MΣo , an event σ could be forced to be made unobservable by converting all
instances of transitions labeled by σ′ to transitions labeled by σ. Then, dur-
ing the conversion of this modified MΣo automaton to M̃Σo , no transitions
corresponding to σ could be cut in M̃Σo to simulate making σ observable.

Although this paper shows how the theory of approximation algorithms
can be applied in a formal manner for the analysis of problems in supervisory
control, this paper has not discussed heuristic approaches for approximations
as in [15, 16]. Heuristic approaches may perform horribly for a few partic-
ular problem instances, but work very well for most other “average case”
problems. However, the use of heuristic methods for supervisory control
problems such as the ones discussed in this paper is still being explored and
research is ongoing.

Note that if there is a cost associated with controlling an event, the
problem of finding the minimal cost set of controllable events to make the
system controllable with respect to a specification language is computable in
polynomial time. This is because for a given system and specification there
is a unique infimal set of controllable events that make the system control-
lable [16]. However, the dual of the sensor selection problem for finding
the minimal cost set of controllable events to make the system controllable
with respect to a sublanguage of a specification language is computationally
equivalent to the sensor selection problem discussed in this paper [16]. This
is because it is not known which sublanguage of the specification language is
proper to calculate the set of controllable events with respect to. There are
also extensions of the sensor selection problem to the case of decentralized
control [17].
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