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Abstract

We consider the aggregation problem in radio networks: find a spanning tree in a given graph and a conflict-free schedule of the
edges so as to minimize the latency of the computation. While a large body of literature exists on this and related problems, we
give the first approximation results in graphs that are not induced by unit ranges in the plane. We give a polynomial-time Õ(

√
dn)-

approximation algorithm, where d is the average degree and n the number of vertices in the graph, and show that the problem is
Ω(n1−ε)-hard (and Ω((dn)1/2−ε)-hard) to approximate even on bipartite graphs, for any ε > 0, rendering our algorithm essentially
optimal. We also obtain a O(log n)-approximation in interval graphs.

Keywords: Data Aggregation, Radio Networks, Approximation Algorithms

1. Introduction

Wireless sensor networks consist of autonomous sensors that typically monitor physical or environmental con-
ditions. They use wireless communication to cooperatively aggregate the recorded data and forward it to a central
location, the sink. The information desired is commonly in the form of a compressible function, such as “max” or
“average”, in which in-network processing can be used to speed up the processing and greatly reduce transmission
energy. At the same time, interference from simultaneous transmissions must be managed for successful reception.

In this paper, we consider the data aggregation problem in general graphs, or radio networks. The objective is to
minimize the latency, or the longest time it takes for any message to reach the sink. The task is two-fold:

1. Construct a directed spanning tree, i.e., an in-arborescence.
2. Form a conflict-free schedule of the transmissions (the edges) that obeys the ordering of the arborescence.

A schedule is conflict free if whenever a node is to receive a message, none of its other neighbors also transmit
(causing interference), and a node can transmit to only one of its neighbors at a time.

This problem, which we dub Radio Aggregation Scheduling (Ras), has been widely studied under the name Min-
imum Latency Aggregation Scheduling in the wireless networking literature. Most of the existing works consider the
setting where nodes are points in the plane with a fixed transmission radius, which corresponds to the case of unit disc
graphs (UDG). It is, however, well-known that wireless environments are always much more complicated [1, 2] —
unless operating in vacuum in outer space. One popular approach in recent years has been to switch to the SINR model
of interference, which is known to add more realism. However, its standard form also makes strong assumptions about
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the geometric nature of communicability and interference and thus ignores the unpredictability seen in practice. To go
beyond these assumptions, we initiate here the study of aggregation in more pessimistic models, starting with general
graphs. To emphasize the distinction of using graphs rather than planar positions, we refer to the problem as Ras.

By reversing the direction of the aggregation process, we can also view it as a broadcasting problem where:

1. [one-on-one] A node can only talk to one other node at a time.
2. [interference from neighbors] A node can hear from its neighbor only if none of its other neighbors transmit.

We refer to this communication model as the radio-unicast model. It relates closely to two other classic broadcasting
problems: telephone broadcast, where (1) holds but there are no conflicts from other neighbors (in essence, modeling
aggregation in wired networks); and radio broadcast, where (2) holds, but a node can transmit to all its neighbors
in the same time slot. As we shall see, however, Ras is significantly harder to solve in general than either of these
problems.

In the telephone model, the successful transmissions of each communication round form a (directed) matching. In
the radio-unicast model, successful transmissions form what we call a Ras-legal matching (see Section 2 for precise
definitions). For any two edges (s1, r1) and (s2, r2) in a Ras-legal matching connecting senders s1, s2 to receivers
r1, r2, it is required that neither (s1, r2) nor (s2, r1) are edges contained in the input graph, thus excluding all potential
interference. This is closely related to the notion of an induced matching. A matching is induced if the edges of the
subgraph induced by the matched vertices are precisely the edges of the matching. A Ras-legal matching hence lies
somewhere between a matching and an induced matching, see Figure 1.

sender
receiver
unused vertex
transmission edge
unused edgeMatching Induced matching Ras-legal matching

Figure 1. Left: A matching is a subset of vertex-disjoint edges. Center: The edges of the graph induced by the vertices of an induced matching are
precisely the edges of the induced matching. Right: In a Ras-legal matching, every receiver is connected to precisely one sender.

Previous Work on Ras. All previous works on Ras consider the setting where nodes are points located in the plane
with unit length transmission radii [3, 4, 5, 6, 7] 1. This corresponds to the study of Ras in unit disc graphs, which
has been shown to be NP-complete [3]. All algorithms known for unit disc graphs compute aggregation schedules
of lengths Θ(Diam + ∆), where Diam is the diameter of the input graph and ∆ the maximal degree. Since every
aggregation schedule is of length at least Diam, these algorithms constitute O(∆)-approximation algorithms which
only give trivial approximation guarantees in graphs with large maximum degree (e.g. if ∆ = Θ(n)). Despite the
considerable effort put into the study of Ras on unit disc graphs, no better approximation ratios are known.

One difficulty in obtaining improved approximation ratios in unit disc graphs is to bound the length of an optimal
aggregation schedule OPT in terms of properties of the input graph. For instance, in unit interval graphs, it is known
that OPT = Ω(Diam + ω(G)), where ω(G) is the clique number (size of the largest clique) of the input graph [7].
It is also known how to compute an aggregation schedule of length O(Diam + ω(G)), which hence constitutes an
O(1)-approximation algorithm (in [7], a 2-approximation is obtained). No interesting bounds on OPT are known for
unit disc graphs or any other non-trivial graph class.
Our Contributions. We initiate a systematic study of Ras, starting with general graphs. We prove that it is NP-hard
to approximate Ras within a factor of n1−ε (Theorem 1) and (dn)1/2−ε (Corollary 1) even in bipartite graphs, for any
ε > 0, where n is the number of vertices of the input graph and d is the average degree. On the positive side, we present
a Õ(
√

dn)-approximation2 algorithm for sparse general graphs (Theorem 2), almost matching our lower bound.
Next, we are interested in whether improved algorithms can be obtained for geometrically defined graph classes

that contribute to metric-sensitive models of actual wireless environments. We focus here on interval graphs. They

1In [7], unit interval graphs as well as grids and tori are considered, which are all subclasses of unit disc graphs.
2We use the notation Õ(.), which equals the usual O(.) notation where all poly-logarithmic factors are ignored.
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can be seen as one-dimensional projections of disc graphs that capture the aspect of different radii, and we present a
highly non-trivial O(log n)-approximation algorithm (Theorem 3). The key part of our analysis is the identification
of subgraphs that provide interesting lower bounds on the length of an optimal aggregation schedule.
Further Related Work. Aggregation problems have been extensively studied in the wireless literature; see the
surveys [8, 9]. As previously mentioned, Ras has been considered in unit disc graphs [3, 4, 5, 6, 7] and O(∆)-
approximation algorithms are known. Furthermore, it has also been shown that, in unit disc graphs, if the interference
radius is strictly larger than the transmission radius, then constant factor approximations can be obtained [5]. For unit
interval graphs, which can be seen as unit-disc graphs in one dimension, a 2-approximation algorithm was recently
given [10]. Optimal algorithms are known for grids and tori [10]. In trees, Ras is equivalent to the telephone broadcast
problem, which has a textbook dynamic programming solution [11, Prob. 6.16]. This exhausts the list of previous work
known on Ras.

A different setting for aggregation problems is where the nodes are located at points in the plane and can adjust
their transmission powers which allows them to reach any other node. Kesselman and Kowalski [12] showed that
aggregation can then be achieved in O(log n) slots. If interference and transmissions follow the geometric SINR
model, Moscibroda and Wattenhofer [13] showed that poly-logarithmic slots suffice, which was improved to optimal
O(log n) [14].

For broadcast in the radio model, Chlamtac and Weinstein [15] proved the first upper bound of O(Diam · log2 n),
with Diam being the diameter of the graph, which was improved to O(Diam · log n + log2 n) soon afterwards by Bar-
Yehuda et al. [16]. The best bound known on the number of rounds, O(Diam + log2 n), given by Kowalski and Pelc
[17], is optimal in light of results of Alon et al. [18] and Elkin and Kortsarz [19].

The first approximation for telephone broadcast was an additive O(
√

n) approximation [20]. This was improved to
a multiplicative O(log2 n)-factor by [21], and then to O(log n) in [22]. The best approximation known for the problem
is O(log n/ log OPT ) [23], which is O(log n/ log log n), since OPT ≥ log2 n always holds. The best lower bound
known is a factor 3 − ε, given in [24].
Outline of the Paper. We give formal definitions of our problems in Sec. 2. Then, in Sec. 3, we present our hardness
results for general graphs, and in Sec. 4, we present our algorithm for sparse general graphs. Finally, in Sec. 5, interval
graphs are discussed.

2. Problem Definition and Notations

Radio Aggregation Scheduling. We are given as input a graph G = (V, E) and a node s ∈ V which is the sink node
of the aggregation problem. We view G as a bidirected graph, i.e., all edges appear directed in both directions.

We seek a schedule, which is a sequence M1,M2, . . . ,Mt of directed matchings in G. The union ∪iMi of these
matchings induces a directed spanning tree (in-arborescence) A directed toward s. Each matching Mi corresponds
to a set of transmissions that can be successful simultaneously; namely, each matching must be Ras-legal in G: if
(u, v), (w, z) ∈ Mi then (u, z), (w, v) < E(G). Finally, the edges of A occur in the matchings in order of precedence
induced by the arborescence: if (u, v) ∈ Mi and (v,w) ∈ M j then i < j. Namely, a node can only forward its message
once it has heard from all of its children. Then an optimal solution to the Radio Aggregation Scheduling problem
(Ras) is a schedule of minimal length.
Broadcasting in the Radio-unicast Model. Since reversing the slots of an aggregation schedule gives a broadcast,
and vice versa, both viewpoints can be used to tackle Ras. In the broadcast version of the problem, node s ∈ V is the
source node and holds a message that is to be sent to all other nodes V \ {s} in the graph. In each round, we seek a Ras
legal matching between the informed nodes (those that know the message) and the uninformed nodes (those that don’t
know the message yet). Initially, there is only a single informed node, the source node s. When an uninformed node
receives the message, it joins the set of informed nodes and can serve as a sender in upcoming rounds. We denote
this communication model where each round induces a Ras-legal matching as the radio-unicast model. An optimal
solution to the broadcasting problem then is a broadcasting schedule that informs all nodes in the minimal number of
rounds.

It turns out that the broadcasting perspective of Ras is more convenient when presenting our algorithms. All our
algorithms solve the broadcasting problem in the radio-unicast model.
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Notation. Let G = (V, E) be the input graph. Unless stated differently, n denotes the number of vertices of G, d the
average degree, ∆ the maximum degree, and Diam the diameter. Those quantities may also appear as functions, e.g.
∆(H), d(H) and Diam(H) denote the respective quantities of graph H.

We write distG(u, v) for the number of hops between nodes u and v in graph G. Let NG(u) denote the set of
neighbors of vertex u in G, and for a set S of vertices, let NG(S ) = (∪u∈S NG(u)) \ S . We write degG(u) the degree
of u in G. Furthermore, for a graph G, we denote its vertex set by V(G) and its edge set by E(G). Given a subset of
vertices U ⊆ V , we denote the subgraph of G induced by the vertices U by G[U].

3. Approximation Hardness of Ras

In this section, we prove that Ras is hard to approximate within factors n1−ε (Theorem 1) and (dn)1/2−ε (Corol-
lary 1), for every ε > 0. Before giving our lower bound construction, we introduce further required notations and
definitions.
Further Definitions. We denote the chromatic number of a graph G with χ(G), and the independence number (size
of a maximum independent set) with α(G). Our lower bound construction relies on semi-induced matchings and a
specific graph product that we discuss first.

A matching is called an induced matching if there is no edge from one endpoint of an edge in the matching to an
endpoint of another edge in the matching. The semi-induced matching has a general definition (see [25]) but we only
give the definition for bipartite graphs that is simpler and all we need.

Definition 1 (Semi-induced Matching). Let G = (U,V, E) be a bipartite graph with a total ordering u1, . . . , un of U.
A semi-induced matching is a matching so that if (ui, a) and (u j, b) are in the matching and i < j, then there is no edge
between u j and a.

Let Im(G) be the size of the largest induced matching of G and Sim(G) the size of the largest semi-induced match-
ing. Observe that Im(G) ≤ Sim(G), for any graph G.

Next, we make use of the following graph product:

Definition 2 (Inclusive Graph Product). The inclusive graph product of G = (V, E) and H = (V ′, E′), denoted by
G ∨ H, has vertices {(xG, xH) | xG ∈ V, xH ∈ V ′}. A pair of vertices (xG, xH) ∈ V(G ∨ H) and (yG, yH) ∈ V(G ∨ H) is
connected iff (xG, yG) ∈ E or (xH , yH) ∈ E′.

See [25] for a discussion of several graph products. We denote Gk = G ∨G ∨ . . . ∨G when there are k copies of
G. This graph has nk vertices.

The following equalities are folklore for the specific product we chose:

χ(Gk) = χ(G)k, (1)
α(Gk) = α(G)k . (2)

Intermediate Problem: Induced Matching Cover. We shall consider a problem on bipartite graphs that is closely
related to Ras. Given a bipartite graph B = (U,V, E), let ImCov(B) denote the minimum number of induced matchings
that together contain (or cover) all the vertices of V . Suppose that nodes U are informed and nodes V are uninformed.
Then, it takes precisely ImCov(B) rounds in order to inform V . This is summarized in Observation 1.

Observation 1. Let B = (U,V, E) be a bipartite graph. Suppose all the vertices in U know the message. Then, the
minimum number of rounds it takes to inform V in the radio-unicast model equals ImCov(B).

Proof. Consider a Ras-legal matching that contains the edges (x, a) and (y, b), where x, y ∈ U and a, b ∈ V . Note that
it is required that (x, b), (y, a) < E and hence the Ras-legal matching is an induced matching. Conversely, given an
induced matching, all the vertices in V in the matching receive the message as there is no interference.

Lower Bound Construction. In order to prove our hardness result, we will use the construction of Feige and Kilian
[26] which shows that it is hard to determine whether a graph G on n vertices has small chromatic number χ(G) ≤ nε

(“yes instance”) or has a small independence number α(G) ≤ nε (“no instance”), for any ε > 0.
4
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Let G be a graph on n vertices as used in the construction of Feige and Kilian. From G, using a construction
similar to the one in [25], we will construct a bipartite graph Be(Gk) on Θ(nk) vertices so that:

ImCov(Be(Gk)) ≤ χ(G), and (3)
Im(Be(Gk)) ≤ k · n + α(G)k. (4)

Suppose now that one bipartition of Be(Hk) is informed and the other one is uninformed. Then, if G is a “yes instance”
(i.e. it has small chromatic number), the whole graph can be informed quickly using Inequality 3 and Observation 1.

Suppose now that G is a “no instance” (i.e. it has small independence number). Then, by Inequality 4, Im(Be(Gk))
is small, too. Using the obvious relationship ImCov(Be(Gk)) ≥ |V(Be(Gk))|/Im(Be(Gk)), we see that ImCov(Be(Gk)) is
large which implies that informing the whole graph takes many rounds.

The previous gap-reduction argument is made rigorous in the following. To this end, for a graph G, we first define
the graph Be(G).

Definition 3. Given a graph G = (V, E), the graph B(G) = (V, V̄ , EB) is a bipartite graph with a copy of V on each
side. There is an edge (v, ū) ∈ EB if (v, u) ∈ E. The graph Be(G) = (V, V̄ , E′) results from B(G) by adding the perfect
matching M = {(v, v̄) : v ∈ V}, i.e., E′ = EB ∪ M.

v1 v2 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

v3 v4 v5 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

G = (V, E) B(G) = (V,V , EB) Be(G) = (V,V , EB ∪ M)

Figure 2. Construction of B(G) and Be(G).

Next, we prove Inequalities 3 and 4 in Claims 1 and 2, respectively.

Claim 1. Let G = (V, E) be a graph. Then, Be(G) = (V, V̄ , E′) can be decomposed into χ(G) induced matchings that
are pairwise disjoint and together contain all of V̄, i.e., ImCov(Be(G)) ≤ χ(G).

Proof. Let C1,C2, . . . ,Cχ(G) be the color classes of G. For i ≥ 1, define a matching Mi between Ci and their copies
C̄i using the edges (v, v̄), for each v ∈ Ci. Note that since Ci is an independent set, Mi is an induced matching. By
definition, the matchings M1,M2, . . . ,Mχ(G) are vertex disjoint and cover all the vertices.

Next, we relate the size of a an induced matching in Be(Gk) to the independence number of G.

Claim 2. Let G be a graph, k an integer. Then, Im(Be(Gk)) ≤ k · n + α(G)k.

Proof. We will use the following inequalities, which appear as Lemma 5.3 and Corollary 5.1 in [25], respectively.

Sim(Be(G)) ≤ Sim(B(G)) + α(G), (5)
Sim(B(Gk)) ≤ k · Sim(B(G)). (6)

Applying (5) to Be(Gk), followed by Inequality 6 and Inequality 2 gives

Sim(Be(Gk)) ≤ Sim(B(Gk)) + α(Gk) ≤ k · Sim(B(G)) + α(G)k ≤ k · n + α(G)k .

The claim then follows from the relationship Im(G) ≤ Sim(G) (that holds for any graph G).

Finally, we prove our hardness results in Theorem 1 and Corollary 1.

Theorem 1. The Ras problem is hard to approximate on bipartite graphs within a factor of N1−δ, for any δ > 0, where
N is the number of vertices.

5
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Proof. We use the gap reduction of Feige and Kilian [26]: for any ε > 0, it is hard to distinguish between the case
(“yes” instance) when a graph G is nε-colorable, i.e., when χ(G) ≤ nε , and the case (“no” instance) when there is no
independent set of size at least nε , i.e., α(G) < nε .

For some small constant δ > 0, let ε be such that 1/ε = 2d1/δe, and let k = 1/ε. Consider Be(Gk) = (Vk, V̄k, Ek)
and let Hk be the graph obtained by adding to Be(Gk) a complete binary tree of depth O(log |Vk |) whose set of leaves
contains Vk. It is easy to check that Hk is bipartite, too. The binary tree allows us to inform the bipartition Vk of
subgraph Be(Gk) of Hk quickly in O(log |Vk |) rounds.

We show now that it is hard to approximate the number of rounds in an optimal Ras schedule of Hk. Suppose
that the root of the binary tree is the source node of the broadcast problem. Let OPT denote the length of a shortest
broadcast schedule. Observe that informing the nodes of the complete binary tree, and thus also the nodes in Vk,
requires only O(log |Vk |) = O(log nk) = O(log n) slots. Informing V̄k after Vk has been informed takes ImCov(Be(Gk))
rounds, by Observation 1. Thus, OPT = ImCov(Be(Gk)) + O(log n).

If G is a yes-instance, χ(G) ≤ nε , so by Claim 1 and Inequality 1,

ImCov(Be(Gk)) ≤ χ(Gk) = χ(G)k ≤ nkε = n ,

and hence
OPT = ImCov(Be(Gk)) + O(log n) = O(n) .

If G is a no-instance, α(G)k ≤ nkε = n, so by Claim 2, Im(Be(Gk)) = O(n), and

OPT ≥ ImCov(Be(Gk)) ≥
|Vk |

Im(Be(Gk))
= Ω(nk−1) .

The ratio between the bounds for the two cases is Ω(nk−2). Recalling that the size of Hk is given by N = |Hk | =

Θ(nk), we get that the approximation hardness is Ω(nk−2) = Ω(N/n2) = Ω(N1− 2
k ) = Ω(N1−δ).

Corollary 1. The Ras problem is hard to approximate on bipartite graphs within a factor of (dN)
1
2−δ, for any δ > 0,

where N is the number of vertices.

Proof. Consider the graph Hk from the proof of Theorem 1, and let n = |V(Hk)|. Let m = |E(Hk)|. Let Ĥd be the
graph obtained from Hk by adding a complete binary tree with Θ(m/d) vertices to the graph and connect the root of
the binary tree to the source node.

Then, N = |V(Ĥd)| = n+Θ(m/d) = Θ(m/d), while the number of edges is m+Θ(m/d) = Θ(m(1+1/d)). The average
degree of Ĥd is hence Θ(d). Note that the introduced binary tree can be informed in Θ(log(m/d)) = Θ(log(n/d))
rounds. Since in any graph OPT = Ω(log n), the introduced binary tree hence doesn’t change the hardness of Ras
and it is still hard to approximate it within a factor of n1−ε . Since dN = Θ(m) = O(n2), the problem is also hard to
approximate within (dN)(1−ε)/2.

Corollary 1 renders our Õ(
√

dn)-approximation algorithm that we present in the next section essentially best
possible.

The graphs used in the proofs of Theorem 1 and Corollary 1 have a diameter of O(log n). By adding additional
edges, their diameters can be reduced to 2. This shows that unlike in the radio model, broadcasting in the radio-unicast
model is no easier in graphs of low diameter.

4. Õ(
√

dn)-approximation Algorithm

We now present a Õ(
√

dn)-approximation algorithm for Ras in general graphs G = (V, E) with average degree
d. We consider the broadcasting perspective in the radio-unicast model. Before presenting our algorithm, we discuss
simulation results that allow us to reuse existing algorithms designed for the telephone and the radio models.
Simulation Between Models. We derive now (rather straightforward) bounds on Ras schedules, utilizing its relation-
ship to better studied broadcast problems.

Recall that in the telephone model, there are no conflicts if two neighbors of a node both transmit. However, a node
can only transmit to one of its neighbors in a given round. In the radio model, when a node transmits, its message goes

6
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to all of its neighbors. However, an uninformed neighbor receives the message only if exactly one of its neighbors is
transmitting in that round.

Our problem shares the unicast transmission rule with the telephone model and the reception conflicts with the
radio model. Algorithms for these models can be simulated in our models.

Lemma 1. A round in the radio model can be simulated in ∆ rounds in the radio-unicast model, and a round in the
telephone model can be simulated in 2∆ − 1 rounds in the radio-unicast model.

Proof. Suppose a set S of nodes transmits in a given round in the radio model. Assume without loss of generality that
the neighbors of each node are ordered in an arbitrary order. We can then simulate it with ∆ rounds, where in round i,
each node in S forwards the message to its i-th neighbor.

Consider a directed matching M that corresponds to the transmissions of a round in the telephone model. Every
edge of uv ∈ M is adjacent to at most (degG(u)− 1) + (degG(v)− 1) ≤ 2(∆− 1) edges, which in turn may touch at most
2(∆ − 1) other edges of M. We can thus color the edges in M “first-fit” using 2∆ − 1 colors so that each color class
induces a Ras-legal matching.

Simulating the algorithm of Kowalski and Pelc for radio broadcast [17], and using Lemma 1, we obtain the
following corollary.

Corollary 2. There is a polynomial-time algorithm for Ras that computes an aggregation schedule of length O(∆(Diam+

log2 n)) and thus constitutes a O(∆ + ∆ log2(n)/Diam)-approximation algorithm.

In the previous corollary, We used here the fact that Diam is a trivial lower bound on the length of an optimal
schedule. In light of the hardness results in Sec. 3, this approximation bound is close to best possible. Complete q-ary
trees show that the ∆Diam term in the absolute bound can be necessary.
Center Selection. Our algorithm uses as a subroutine solutions to a classic facility location problem. In Center
Selection, we are given a graph G = (V, E), a set X ⊆ V of possible sites for centers, a set C ⊆ V of clients, and a
parameter k. We wish to find a set S ⊆ X of k centers, such that the maximum distance from a client to the nearest
center is minimized. For a set of centers S ⊆ X, let ρ(G, S ,C) := maxv∈C distG(v, S ) be the covering radius of S in G.
The objective of Center Selection is to find an S ⊆ X of cardinality k which minimizes ρ(G, S ,C).

A greedy algorithm, which we denote by Greedy-CS(G, X,C, k), gives a 3-approximation to this problem. This
result is certainly well-known, but since we are not aware of a reference for this particular version, we include a proof
in the appendix for completeness. It is well known that many center selection problems in which the set of potential
sites for centers is restricted such as ours cannot be approximated within a factor smaller than 3.

easy to see that an approximation factor of 3 is best possible for most

Lemma 2. Greedy-CS is a 3-approximation algorithm for Center Selection.

Ras scheme. In Algorithm 1, we present an algorithm for the broadcast problem in the radio-unicast model. We
assume that the optimal value OPT (length of a shortest broadcast scheme) is known by the algorithm. This can be
ensured e.g. by running the algorithm multiple times trying the different values {log n, . . . , n} for OPT and returning
the best solution (log n is an obvious lower bound).

Let s ∈ V be the source node. To keep the presentation simple, we assume that degG(s) ≥
√

dn. If this is not the
case, then we first inform an arbitrary node s′ of degree at least

√
dn in at most OPT rounds which then takes the role

of s. Clearly, the length of a minimum length schedule of the modified instance with source s′ is at most by OPT
longer than the length of a minimum length schedule with source node s. Hence, by solving the instance with source
node s′, we may lose an additive 2 · OPT term. However, since our obtained approximation factor is polynomial,
this factor is negligible. Last, if no node of degree at least

√
dn exists, then we simply apply the simulation result of

Corollary 2, and we immediately obtain an Õ(
√

dn)-approximation algorithm.
First, our algorithm, Algorithm 1, informs the large-degree nodes, i.e., nodes L of degree at least K =

√
dn. The

number of large degree nodes is bounded by |L| ≤ K, as otherwise the degree sum of the graph would be greater than
K2 = dn = 2|E(G)|. Thus, by transmitting serially on shortest paths (with no transmissions occurring simultaneously),
the nodes in L can be informed in time O(K ·OPT ). In order to inform the small-degree nodes V \ L, we simulate the
radio-broadcast algorithm of [17] on the subgraph G[C], where C = V \ L. To make this work in the desired number

7
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Algorithm 1 Broadcast in the radio-unicast model for sparse general graphs

Require: G = (V, E) input graph, let K =
√

dn; s source node of degree at least K
1: Let L← {v : degG(v) ≥ K}, C = V \ L, and X = N(L) ∩C
2: Inform the nodes in L sequentially along shortest paths from s
3: Let S ← Greedy-CS(G[C], X,C,K · OPT )
4: Inform all nodes in S using single hops from L
5: Simulate the radio broadcast algorithm of [17] on G[C] until all nodes are informed

of rounds, we have to ensure that for each node in C, there is an informed node within distance O(OPT ) in G[C]. To
this end, we employ our greedy center selection algorithm in Line 3 and obtain centers S such that every node of C
is within distance 3 · OPT of some node in S (see Lemma 3). Furthermore, S is contained in the neighborhood of
L, which allows us to inform S quickly. This property is then used in the proof of the main theorem of this section,
Theorem 2.

Lemma 3. Each node in C is within distance at most 3 · OPT from a node in S in the induced subgraph G[C], i.e.,
ρ(G[C], S ,C) ≤ 3 · OPT.

Proof. Let Q be the set of nodes in C that are informed (directly) by nodes in L in the optimal broadcasting scheme.
At most |L| of them can be informed in a single round, so |Q| ≤ |L| · OPT ≤ K · OPT . The nodes v ∈ C \ Q must then
all satisfy distG[C](v,Q) ≤ OPT and thus ρ(G[C],Q,C) ≤ OPT . The center selection algorithm Greedy-SC positions
K · OPT ≥ |Q| nodes, that by Lemma 2 yields a 3-approximation of the covering radius, giving ρ(G[C], S ,C) ≤
3 · ρ(G[C],Q,C) ≤ 3 · OPT .

Theorem 2. There is a polynomial time randomized approximation algorithm for Ras with approximation factor
Õ(
√

dn).

Proof. Suppose that OPT is known to the algorithm. Recall from above that |L| ≤ K. As any node can be informed
in OPT time along a shortest path, the set L is informed in time OPT · K (Line 2). The center selection algorithm
Greedy-SC chooses K · OPT centers S that are adjacent to L in G. Informing those in Line 4 takes time at most
K · OPT , since each requires only a single transmission from a node in L.

Consider now the graph G[C]. By construction, the maximum degree in G[C] is at most K. As shown in Lemma 3,
the distance in G[C] from an arbitrary node to an informed node (a node in S ) is at most 3 ·OPT . Suppose we form the
graph H consisting of G[C] along with a new node s′ that is adjacent to all the nodes in S . By the above argument, the
diameter of H is O(OPT ), so the radio broadcast algorithm of [17] uses O(Diam(H) + log2 |V(H)|) = O(OPT + log2 n)
rounds to broadcast information from s′. Running the algorithm on H when all the nodes in S have been informed
will certainly not take more time. Thus, we can apply our radio broadcast simulation of Lemma 1 to obtain a Ras
broadcast on G[C] in time O((OPT + log2 n)K) = Õ(OPT · K).

5. Interval Graphs

Let V = {I1, . . . , In} with I j = [a j, b j] be a set of intervals on the line, where a j, b j are real numbers such that
a j < b j. Let G be the corresponding interval graph, i.e., it has vertex set V , and two vertices I j, Ik ∈ V are adjacent if
and only if I j and Ik intersect (I j ∩ Ik , ∅). For an interval v ∈ V , denote by l(v) and r(v) its left and right boundaries.
For x, y ∈ R, let G[x, y] denote the subgraph of G induced by the intervals that are entirely contained in [x, y], that is,
V(G[x, y]) = {v ∈ V : l(v) ≥ x and r(v) ≤ y}. Furthermore, denote by len(v) the length of interval v. We write lmax for
the length of a longest interval in G. W.l.o.g., we assume that all interval boundaries are integers in {1, 2, . . . , 2n}, and
all interval boundaries are distinct (it is well-known that every interval graph has such a representation).

Before presenting our algorithm, we show that the clique number of an interval graph G (the size of a largest
clique in G) provides a lower bound for the length of an optimal schedule. This lemma is similar to Lemmas 2 and 3
of [10].

Lemma 4. Let G be an interval graph. Then: OPT ≥ ω(G)/2.
8
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Proof. Let C be a largest clique of size ω(G) and let x ∈ R be such that for every u ∈ C : l(u) ≤ x ≤ r(u), that is, every
interval of the clique intersects x. Suppose for the sake of a contradiction that three intervals of C are informed in the
same round, that is, there are distinct informed intervals u1, u2, u3 ∈ V and distinct uninformed intervals v1, v2, v3 ∈ C
such that, for i ∈ {1, 2, 3}, ui informs vi, or, in other words, the matching M = {u1v1, u2v2, u3v3} is Ras-legal.

Let vl ∈ {v1, v2, v3} be the interval with smallest left boundary, vr ∈ {v1, v2, v3} the interval with largest right
boundary (vl and vr are not necessarily disjoint), and let vc ∈ {v1, v2, v3} \ {vl, vr}. Then interval vc is entirely contained
in vl ∪ vr. Thus, the interval uc that informs vc is also adjacent to vl or vr, a contradiction to M being Ras-legal.

Next, our algorithm relies on the subroutine Diam-path(G) that, given a connected interval graph G, returns a
shortest-distance path that dominates all vertices of G.
Diam-path(G). Let u1 ∈ V(G) be the interval with smallest left boundary, and let u2 ∈ V(G) be the interval with largest
right boundary. Let Vp ⊆ V(G) be the subset of proper intervals, that is, the set of intervals v ∈ V(G) that are not
contained in another interval. In other words, v ∈ Vp if, and only if, there is no v′ ∈ V(G) with l(v′) < l(v) < r(v) <
r(v′). Since all interval boundaries are distinct, both u1 and u2 are proper intervals and hence in Vp. Diam-path(G)
returns a shortest path from u1 to u2 in the graph G[Vp]. This “diameter path” has length at most Diam(G).
Algorithm. Similar to our algorithm for sparse general graphs, we assume that the value of OPT is known. Fur-
thermore, we assume that the input graph G is connected, since otherwise there is no solution to Ras. We will
decompose G hierarchically as follows. Let G1 = G and let P1 = Diam-path(G1). Furthermore, for integers i ≥ 1, let
Ui ⊆ V be the subset of intervals whose lengths are contained in (( 1

2 )ilmax, ( 1
2 )i−1lmax]. Then, we define the subgraph

H1 = G[V(P1) ∪ U1] consisting of intervals of the largest length class plus a diameter path, where V(P1) denotes the
intervals contained in path P1. As P1 is a diameter path, V(P1) can be informed in Diam(G) time. In Lemma 5, we
will argue that the subgraph H1 is 4-claw-free3, and, using this property, we will show in Lemma 6 that U1 can be
informed in O(OPT ) rounds. Thus, overall in O(OPT ) rounds, the nodes V(H1) are informed.

Next, given the subgraph Gi, we define inductively Gi+1 ⊆ Gi to be the subgraph induced by the set of yet
uninformed intervals, that is, Gi+1 = G[V(Gi) \ V(Hi)]. Let Pi+1 be a collection of diameter paths of the connected
components of Gi+1 as computed by Diam-path, and let Hi+1 = Gi+1[V(Pi+1) ∪ (Ui+1 ∩ V(Gi+1))] consisting of yet
uninformed intervals of length class i + 1 and a collection of diameter paths, where V(Pi+1) denotes the intervals
contained in the diameter paths Pi+1. Similar as before, once V(Pi+1) has been informed, by Lemma 6, we can inform
V(Hi+1) in O(OPT ) time. The key part of our argument is that V(Pi+1) can be informed by V(Pi) in O(OPT ) time,
which is proved in Lemma 7. Our argument shows that given an interval v ∈ V(Pi), there are at most O(OPT 2)
intervals in V(Pi+1) that intersect with v, and we prove that they can be informed in O(OPT ) time. Thus, for every i,
the nodes V(Hi) can be informed in O(OPT ) rounds.

As lmax ≤ 2n and every interval is of length at least 1, there are O(log n) length classes. Hence, in O(log(n) ·OPT )
rounds, all nodes V(G) can be informed.
Analysis. We are going to prove the following theorem:

Theorem 3. There is a polynomial-time algorithm for Ras in interval graphs with approximation factor O(log n).

The theorem follows from the previous description of the algorithm together with the main Lemmas, Lemma 6 and
Lemma 7. In Lemma 6, we show that nodes V(Hi) can be informed in O(OPT ) rounds if nodes V(Pi) are informed,
and in Lemma 7, we show that nodes V(Pi) can be informed in O(OPT ) rounds if V(Pi−1) are informed.

We first state simple observations about the employed quantities in our algorithm.

Observation 2. All intervals in subgraph Gi are of length at most ( 1
2 )i−1lmax.

Observation 3. No interval in V(Hi) \V(Pi) contains an interval of Pi, that is, for every v ∈ V(Hi) \V(Pi) there is no
u ∈ V(Pi) such that l(v) < l(u) < r(u) < r(v).

Observation 3 follows by construction of Pi. The path Pi is constructed via algorithm Diam-path which only
chooses proper intervals.

Next, we show that the graphs Hi do not contain K1,4 as an induced subgraph.

3A graph is 4−claw-free, if it doesn’t contain the complete bipartite graph K1,4 as an induced subgraph.
9
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Lemma 5. For any i, the subgraph Hi is 4-claw-free.

Proof. V(Hi) consists of the intervals of the diameter path Pi, and a subset of Ui. As the lengths of intervals in Ui

differ at most by a factor of 2, the subgraph of Hi induced by the vertices V(Hi)∩Ui cannot induce a 4-claw. Next, by
Observation 3, no interval of Pi is contained in any interval of Ui. Thus, a 4-claw in Hi could potentially only exist if
an interval v ∈ Pi had four independent neighbors in V(Hi) ∩Ui. This, however, implies that len(v) ≥ 2 ·min{len(u) :
u ∈ V(Hi) ∩ Ui} + 2, since two of the four intervals have to be fully contained in v and the other two have to overlap.
The bound can be bounded from below by 2 · ( 1

2 )ilmax + 2 = ( 1
2 )i−1lmax + 2, a contradiction to Observation 2. Hence,

Hi is 4-claw-free.

Last, we prove the main lemmas, Lemma 6 and Lemma 7, that show that the subtasks of our algorithm can all be
performed in O(OPT ) rounds.

Lemma 6. Suppose that the vertices of Pi have been informed. Then, V(Hi) can be informed in O(OPT ) rounds.

Proof. We color the vertices of Pi alternately with four colors, where each color is used on every fourth vertex. Since
Pi is a collection of diameter paths in the connected components of Gi, nodes with the same color have disjoint
neighborhoods in Gi. Processing the colors in sequence, the nodes of each color inform their Ui neighbors in parallel.
Since Hi is 4-claw-free, the Ui-neighborhood of each node p ∈ Pi can be partitioned into three cliques: Nodes that
intersect the left boundary of p, nodes that intersect the right boundary p, and nodes that are fully contained in p.
Informing those nodes sequentially one-by-one requires 3ω(Hi) ≤ 3ω(G) rounds, which is bounded by 6 · OPT , by
Lemma 4.

Lemma 7. Nodes Pi+1 can be informed by nodes Pi in O(OPT ) rounds.

Proof. Let φi+1 : Pi+1 → Pi be a mapping so that φi+1(v) = u ⇒ u ∈ N(v). Next, produce a 4-coloring of Pi with
color classes P1

i , . . . , P
4
i , as in the proof of Lemma 6. Iterate now through the color classes P j

i . In each iteration, all
nodes u ∈ P j

i inform the nodes φ−1
i+1(u) simultaneously as follows: Let C1 . . .Ck denote the connected components of

G[φ−1
i+1(u)]. Node u informs every OPT -th interval of every connected component C j. If |C j| < OPT then an arbitrary

interval of C j is informed. Thus, u requires O(k + |φ−1
i+1(u)|/OPT ) rounds. In Claim 3, we will prove that k = O(OPT )

and |φ−1
i+1(u)| = O(OPT 2).

Claim 3. |φ−1
i+1(u)| = O(OPT 2) and the number of components of G[φ−1(u)] is O(OPT ).

Thus, the previous step requires O(OPT ) rounds. Next, the informed nodes of φ−1
i+1(u) inform the uninformed

nodes of φ−1
i+1(u). Since φ−1

i+1(u) is a collection of paths, and since for every uninformed node of φ−1
i+1(u) there is an

informed node within distance OPT , this step can also be done in O(OPT ) rounds. It remains to prove Claim 3, which
then completes the proof of this Lemma.

Proof of Claim 3. Let u1, . . . , uq denote the intervals of φ−1
i+1(u) ordered from left to right. Since u3 does not intersect

with u1 and u1 intersects with u, u3 is entirely contained in u. By a similar argument, uq−2 is entirely contained in u.
Hence, all intervals u3, . . . , uq−2 are entirely contained in u.

Let x be the left boundary of u3, and let y be the right boundary of uq−2. Then, y − x ≤ len(u) ≤ ( 1
2 )i−1lmax, where

the second inequality is due to Observation 2.
Consider now the graph G[x, y]. Note that as y − x ≤ len(u) ≤ ( 1

2 )i−1lmax, none of the nodes of
⋃

j≤i−1 U j are
contained in V(G[x, y]). Furthermore, as for every j, P j consists of proper intervals in G j, none of the intervals⋃

j≤i P j are included in u and hence in V(G[x, y]). Thus, the only nodes outside V(Gi+1) that could potentially be
contained in G[x, y] are nodes of Ui. Let V ′ = V(G[x, y]) ∩ Ui.

Let C1, . . . ,Ck be the components of G[x, y]−V ′. Those components have to be informed by the nodes N(V(G[x, y])−
V ′). Note that for every w ∈ N(V(G[x, y])−V ′), either w ∈ V ′, w intersects x, w intersects y, or w intersects both x and
y. The key of our argument is that at most four4 intervals of N(V(G[x, y])−V ′) can inform intervals of V(G[x, y]−V ′)
simultaneously in one round. To see this, observe first that it is impossible that two intervals that both intersect x (or

4By a more precise argument, three can also be argued. Any constant is enough for our purposes.
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y) simultaneously inform two intervals of V(G[x, y] − V ′) (see left side of Figure 3). Then, since every interval of V ′

is of length at least ( 1
2 )ilmax and hence at least of length 1

2 (y − x), at most 2 intervals of V ′ may inform intervals of
V(G[x, y] − V ′) simultaneously (see right side of Figure 3).

Figure 3. Left: Illustration of the fact that two intervals a, b intersecting x cannot inform two intervals u, v of G[x, y] simultaneously since either
u or v is adjacent to both a and b (in the illustration, u is adjacent to a, b). Right: No three intervals a, b, c of G[x, y] of sizes at least 1

2 (y − x) can
inform three intervals u, v,w of G[x, y] simultaneously (in the illustration, v is adjacent to both a and b).

Thus, in OPT rounds, at most 4 · OPT intervals of V(G[x, y] − V ′) can be informed. This immediately proves the
second part of the lemma, that is, the number of components of G[φ−1

i+1(u)] is O(OPT ).
To prove the first part, for the sake of a contradiction, suppose that |φ−1

i+1(u)| > C ·OPT 2 for a large enough C. Since
G[φ−1

i+1(u)] is a collection of paths and the fact that at most 4 · OPT intervals of φ−1
i+1(u) have been informed by nodes

outside V(G[x, y] − V ′), there exists a node v ∈ φ−1
i+1(u) that has not been informed by V \ φ−1

i+1(u) and is at distance at
least C · OPT 2/(4 · OPT ) = C · OPT/4 from an informed node. As C is chosen large enough, this implies that more
than OPT rounds are required to inform v, a contradiction. Hence, we have φ−1

i+1(u) = O(OPT 2).
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Appendix A. Center Selection Algorithm

We believe that the following algorithm together with Lemma 2 are well-known. However, since we are not aware
of a reference for this particular version, the algorithm and its analysis are presented here for completeness.

Algorithm 2 Center Selection algorithm Greedy-CS(G, X,C, k)
Require: Graph G = (V, E), potential sites for centers X ⊆ V , clients C ⊆ V , number of centers to be placed k

1: S ← {an arbitrary node in C}
2: for i = 1 . . . k − 1 do
3: c← arg maxc′∈C dist(c′, S )
4: x← arg minx′∈X dist(x′, c)
5: S ← S ∪ {x}, X ← X \ {x}
6: end for
7: return S

Lemma 2 Greedy-CS is a 3-approximation algorithm for Center Selection.

Proof. Let r = ρ(G, S ,C) be the covering radius of the set S as computed by Greedy-SC. Let S ∗ denote an optimal
solution and let r∗ = ρ(G, S ∗,C) be its covering radius.

First, suppose that there are two centers x1, x2 ∈ S with dist(x1, x2) ≤ 2
3 r. W.l.o.g. suppose that x1 was inserted

into S before x2. Consider the iteration when x2 was inserted and denote by c the client that was chosen in this
iteration in Line 3. Since c was chosen, we have dist(c, x1) ≥ r. Using this fact and the assumption dist(x1, x2) ≤ 2

3 r,
by the triangle inequality, we obtain dist(x2, c) ≥ 1

3 r. Note that x2 is the node that minimizes the distance to c, and
thus we have r∗ ≥ dist(x2, c) which implies r∗ ≥ 1

3 r and proves the lemma for this case.
Assume now that for every two centers x1, x2 ∈ S , we have dist(x1, x2) ≥ 2

3 r. Let x ∈ S be any node and denote by
c the selected client when x was inserted into S . Then, dist(x, c) ≤ r∗. As c is covered in S ∗ within distance r∗, there
exists an x′ ∈ S ∗ s.t. dist(x, x′) ≤ 2r∗. Suppose that r > 3r∗. Under this assumption and using the fact that two centers
x1, x2 ∈ S are at least a distance 2

3 r apart, there exists an injective mapping φ : S → S ∗ so that dist(x, φ(x∗)) ≤ 2r∗.
As |S | = |S ∗|, this mapping is a bijection. This, however, implies that r ≤ 3r∗, a contradiction. Hence, the assumption
that r > 3r∗ was wrong and we deduce that r ≤ 3r∗ which proves the lemma.
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