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1 IntroductionThe problem of allocating and utilizing centers in a communication network is a majorissue in distributed network design. Among the various applications requiring the use ofcenters are distributed databases, routing, distributed data structures, etc. ([HR88, ML77,MK83, BG87, Pel90]). Using a collection of centers o�ers a convenient intermediate approachbetween the fully centralized and the fully distributed solutions, and provides a reasonablebalance between the need for fault-tolerance and economical considerations. Unfortunately,all but the simplest center allocation problems are NP-hard, and therefore are consideredunlikely to be tractable. In this paper, we discuss the signi�cant parameters of centerallocation, de�ne the resulting optimization problems, and propose several approximationalgorithms for selecting centers and for distributing the users among them.In all variations of the center allocation problem considered in this paper, our goal iscomposed of two parts. The �rst is to select a collection of centers C = f�1; : : : ; ��g, whereC � V and V is the set of the nodes of the network. The second is to assign each of theremaining nodes in the network to one of the centers. We denote by '(v) the center thatis assigned to the node v, and we say that '(v) serves v. The pair (C; ') determining thecenter assignment is referred to as the assignment pair.Let S'(�) denote the set of vertices assigned to the center �, i.e.,S'(�) = fv j '(v) = �gA center assignment can thus be characterized by the collection of pairsS = f(�1; S'(�1)); : : : ; (��; S'(��)gsuch that �i 2 C, S'(�i) � V for every 1 � i � � and Si S'(�i) = V . We refer to thecollection S as an assignment tuple. We sometimes refer to S as a partition, when we wishto ignore the centers and consider only the collection of subsets S'(�i). We shall use the tworepresentations, (C; ') and S, interchangeably.As accessibility is a major concern in distributed systems, the distance between clientsand their respective centers is an important design parameter in center allocation problems.Consequently, given a collection of centers, one obvious assignment choice would be to select,for every client v, the center nearest to it. A potential problem with this choice is thatit may conict with another signi�cant concern, namely, workload balancing. The nearestcenter assignment might result in all (or most) sites using a single center (or a small subset ofcenters). This is undesirable, since it overloads the chosen centers and may create bottleneck1



problems. A possible way to overcome this situation is to bound the maximum number ofsites assigned to any particular center � by jS'(�)j � L, for some bound L. (Naturally L hasto be large enough, i.e., L � n=�). This paper concentrates on center problems that insiston this maximal load requirement, referred to as balanced center problems.It turns out that the two parts of the center allocation problems are not of equal di�culty.Once the centers are selected, it is possible to assign the clients optimally using standardow techniques, as indicated in Section 2. We should therefore focus mainly on the harderpart of the problem, involving the selection of the centers. Our aim is to select the \best"set of centers and the best assignment of nodes to the centers in a given network. There aretwo natural ways to approach this problem:1. Fixing the number of centers, �, and trying to minimize maxf(dist(v; '(v))g.2. Fixing a bound, �, on the maximal distance between a node and its center, and mini-mizing the number of centers.These problems are sometimes referred to as the �-centers and the �-dominating set problemsrespectively. In both cases we consider the balanced versions of these problems, i.e., solutionsin which no center is assigned more than L clients. Both these problems are NP-hard (forunbounded �) (see [GJ79]), even without the load constraint. Therefore, we direct our e�ortstoward attempting to approximate the optimum solution.In the unbalanced case, i.e., with no constraint on the load, the two dual forms of theproblem were given approximation algorithms before. The �-centers problem was treatedin [HS86], and given a polynomial time algorithm with approximation ratio 2. The �-dominating set problem can be formulated as a special case of the set cover problem of[Lov75], for which the greedy algorithm described therein provides an approximation ratioof log jV j+ 1.In Section 5 we present an approximation algorithm for the balanced �- dominating setproblem with approximation ratio dln jV je.The �-centers problem becomes harder with the introduction of the balancing require-ment, and it is necessary to develop stronger techniques than the ones used in [HS86] inorder to overcome the di�culties resulting from the need to take the load constraint intoaccount. In Section 3, we present our �rst main result, which is an approximation algorithmSelect Centers(G;L; �) for the balanced �-center problem that achieves a constant approx-imation ratio. Let us now outline the strategy on which our solution is based. Our startingpoint is the elegant approximation technique of Hochbaum and Shmoys [HS86] for the un-2



balanced � center problem. We start by choosing an initial set of centers using the algorithmof [HS86]. After the initial centers are chosen, we assign the clients to these centers in twophases using ow techniques. This initial assignment, 'I , does not necessarily obey the loadconstraints. Now the centers are partitioned into two sets, namely, the \light" centers (thosethat have fewer than L clients), and the \heavy" ones (those that have more). For the lightcenters, this assignment is �nal; we prove that the speci�c choice of the initial assignment'I guarantees that this does not harm the solution. For the heavy centers, however, somerebalancing is necessary. Each connected component of the heavy centers with their clientsis treated separately. In each component, we construct a spanning tree, and apply a \tree-contraction" algorithm whose task is to balance the loads on the centers. This algorithmprocesses the spanning tree from the leaves up, and moves clients along the edges of thetree, spreading them among the selected centers and other nodes in their neighborhood, asnecessary.In Section 4 we consider the weighted variant of the problem, in which each node vhas a nonnegative weight !(v), and the feasibility constraint is that the selected collectionof centers satis�es Pv2C !(v) � �. Again, an approximation algorithm for the unbalancedversion of this problem (with ratio 3) is given in [HS86], however, we see no immediate way ofmodifying it for the balanced problem. The algorithmWeighted Centers(G;L; �) proposedfor this problem in the current paper is based on a technique for converting solutions withapproximation ratio � for the unweighted problem into solutions with approximation ratio2�+1 for the weighted problem. (The technique applies only for a speci�c type of solutionsfor the unweighted problem, referred to as minimum cardinality solutions, but fortunatelythe solutions generated by our unweighted algorithm Select Centers(G;L; �) fall into thiscategory.)Finally, we also consider the issue of fault tolerance. One common strategy for handlingthis problem is based on assigning multiple centers for each client. This approach handles theproblem of center crashes, but does not attempt to handle the problem of communicationfaults. We would like to exploit redundancy in order to enhance data availability in theface of communication failures, including possible network partitions. Towards this goal, wepropose the concept of k-tolerant sets: Let A � V be the set of potential servers, and B � Vthe set of potential customers. A k-tolerant A-set for B (or simply a k-tolerant set) is asubset C � A, such that for every v 2 B, either v 2 C (this is possible only if v 2 A\B) orthere are k vertex-disjoint paths from v to C (in particular, to k distinct vertices in C). Asolution to the k-tolerant set problem is such a set C � A of minimal size. Note that whenA = V , such a set exists in every graph, regardless of its connectivity. For example, Figure 1depicts a 3-tolerant center set in a 1-connected graph, where A = B = V . An approximation3
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d t����@@@@ @@@@ ���� ����@@@@ @@@@ ����Figure 1: A 1-connected graph and a 3-tolerant center set for it (darkened vertices denotecenters).algorithm Tolerant Centers(G; k) for the k-tolerant set problem is described in Section 6.2 Preliminaries2.1 The problemThe network is described by a connected undirected graph G = (V;E), jV j = n, with aweight c(u;v) for every edge (u; v) 2 E, representing the length of the edge. The verticesrepresent the sites of the network (or the processors located at these sites) and the edgesrepresent bidirectional communication channels between these sites.Let us de�ne some concepts concerning graphs. For two vertices u; w in G, let distG(u; w)denote the length of a shortest path in G between those vertices, where the length of a pathis the sum of its edge weights. (In the above notation, we sometimes omit the reference toG where no confusion arises.) The neighborhood of a vertex v 2 V is de�ned as �(v) = fw j(w; v) 2 Eg. Let (C; ') be a given center assignment, and letS = f(�1; S'(�1)); : : : ; (��; S'(��))gbe the induced assignment tuple. In all our assignments, � 2 S'(�); that is a center alwaysserves itself. For A � C, de�ne S'(A) = [�2AS'(�). The following de�nitions formalize our measures for the quality of this assignment. We�rst de�ne the appropriate radius measure. LetR(S'(�i)) = maxv2S'(�i)fdist(v; �i)g;4



and let R(S) = maxiR(S'(�i)). Next, the load of a center �i is denotedL(�i) = jS'(�i)j;and the maximal load of the assignment tuple S is L(S) = maxifL(�i)g. We say that a pair(C; ') is �-dominating if the induced assignment tuple S satis�es R(S) � �, and L-balancedif S satis�es L(S) � L.Next let us de�ne the basic notion of an approximation algorithm. This is a polyno-mial time algorithm for an optimization problem, with some performance guarantee on thequality of the produced solutions. The approximation ratio of an approximation algorithmfor a minimization problem is the maximal ratio between the solution obtained by the algo-rithm and the optimal solution, where the maximum is taken over all input instances to theproblem. A similar de�nition applies to maximization problems.2.2 Assigning clients to �xed centersThis subsection describes how to handle situations in which the centers are already �xed, butwe are given control over the assignment, ', of centers to sites. As mentioned earlier, if onerelies solely on distance considerations, then the obvious choice is the nearest assignment,N . This assignment satis�esN (v) 2 f�i j dist(�i; v) � dist(�j; v); 81 � j � jCjg;and is straightforward to compute. However, we are interested in balancing the work loadas well, that is, we want to minimize the radius of the assignment tuple, subject to theconstraint L(S) � L. Producing a balanced assignment is a variant of a partitioning problemdescribed in [BG87], Sect. 5.4.3, as the concentrator location problem, and solved via linearprogramming or the ow methods of [Ber85, BG89]. In that problem the minimized functionis Pv2V dist(v; '(v)). Our solution for assigning centers to clients is a slightly more involvedvariation of that solution.The procedure Assign(G;C; L), depicted in �gure 2, solves the assignment problem. It�nds the minimal radius for which an assignment is possible using standard ow techniques(cf. [Eve79]). We de�ne the integral ow function fG : E 7! Z+, where fG(e) is the owassigned to edge e. (We omit the de�nitions of ow functions and constraints they satisfy;these de�nitions can be found in, e.g. [Eve79]). The assignment is constructed based on themaximum ow in the appropriate ow-graph, Gb.The ow graph is generated by Procedure F low graph(C;U; �;m1; m2; m3), presented inFigure 3. This procedure is also used as a component in our later algorithms.5



1. Let �d = (d1; :::; dq) be the list of distances between the vertices of V nC and the centersin C, in increasing order.2. Let the variable � run a binary search on �d:(a) Call G�  F low graph(C; V n C; �; L� 1; 1; 1).(b) Compute the maximum integral ow function fG� in G�.(a) Let b = minfd j the maximum ow in Gd is jV n Cjg.(b) For every v in V n C set '(v) to be the center �i such that fGb(�i; v) > 0.Figure 2: Procedure Assign(G;C; L)1. Construct a bipartite graph G0 = (C;U;E 0), withE 0 = f(�; v) j � 2 C; v 2 U; dist(�; v) � �g.2. Add two new vertices s and t. Connect s to every node in C. Connect every node inU to t.3. De�ne capacities  by setting (s; �) = m1, (�; v) = m2 and (v; t) = m3.4. Output the resulting ow-graph.Figure 3: Procedure F low graph(C;U; �;m1; m2; m3)The relationship between ow in the ow graphs G� constructed by ProcedureAssign(G;C; L) and the center assignment is established by the following lemma.Lemma 2.1 There exists a feasible assignment of the clients to the centers in C with radius d,i� the maximum ow in Gd is jV n Cj.Proof: Let ' be a balanced center assignment with radius d. No center is assigned morethan L � 1 clients (plus itself). If '(v) = �, then there is an edge in Gd between v and �.On each such edge it is possible to push one unit of ow, resulting in a total ow of at leastjV n Cj, while obeying the capacity constraint for the edges of type (s; �).Conversely, if there exists a ow of size jV nCj, then an assignment with radius d can beconstructed simply as described in procedure Assign(G;C; L).Corollary 2.2 Procedure Assign(G;C; L) returns an assignment with the minimal feasibleradius. 6



Since procedure Assign(G;C; L) requires polynomial time in n, we have shown:Proposition 2.3 Given a graphG, a collection of centers C � V , � = jCj, and a bound L, suchthat L � n� , there is a polynomial time algorithm for computing an assignment ' : V n C 7! Cwith an induced assignment tuple S satisfying L(S) � L and minimal radius R(S).Using similar techniques it is possible to assign several centers to each client. Such anapproach may be useful for fault tolerance purposes, for instance.De�nition 2.4 The balanced t-assignment problem is de�ned as follows:Input: Graph G(V;E), a collection of centers C � V , integers L; t � 1.Goal: A t-assignment ' : V n C 7! Ct assigning t centers to each vertex, and minimizing theradius R(S) of the induced assignment tuple S, subject to the constraint L(S) � L.The algorithm for solving this problem is a modi�cation of the previous one. ProcedureF low graph(C; V n C; �; L � 1; 1; t) is called with di�erent values of the parameter �. It iseasy to see that there exists a feasible assignment i� the maximum ow is t � jV nCj, thereforethe minimal � for which the maximum ow equals t � jV n Cj is the minimum radius.Proposition 2.5 Given a graphG, a collection of centers C � V , � = jCj, and a bound L, suchthat L � tn� , there is a polynomial time algorithm for computing a t-assignment ' : V nC 7! Ctwith an induced assignment tuple S satisfying L(S) � L and minimal radius R(S).3 The balanced �-center selection problemIn this section we turn to the selection problem, and present an approximate solution to theproblem in which the number of centers �, and a load constraint L, are given, and we wantto optimize the radius. Let us �rst give a formal de�nition of the problem and introducesome basic notation.De�nition 3.1 The L-balanced �-centers problem is de�ned as follows:Input: A complete weighted graph G = (V;E), edge weights c(u;v), integers L, � � 1.Goal: Select an L-balanced center assignment (C; '), such that jCj = �, minimizing the radiusR(S) of the induced assignment tuple S.Let us denote the optimal radius by Ropt(G;L; �).We assume that the edge weights satisfy the triangle inequality. If the graph does not obeythis assumption, we can modify it into such a complete graph by setting c(u;v) = distG(u; v)7



for each edge (u; v). Without loss of generality, we label the edges so that ce1 � ce2 � ::: �cen(n�1)2 , and denote cj = cej for all j � 1.Following [HS86], for an integer � � 1, we de�ne the bottleneck graph, G� = (V;E�)to be an edge subgraph of G, where E� = fej 2 E j j � �g. We also de�ne the t-closuregraph (G0)t, for any edge subgraph G0 of G, as the unweighted graph in which two nodes areconnected i� there is a path of at most t edges between them in the original graph G0.3.1 The algorithmWe now give an approximation algorithm Select Centers(G;L; �) to the problem, achievinga constant approximation ratio. Let us start with an overview of the algorithm. The algo-rithm considers the bottleneck graphs, G�, in increasing order of �. For each such graph,it chooses a maximal independent set, C, in G2�. As explained in [HS86] (see Claim 3.2below), this set C indicates whether there exists a feasible solution in G�. If there is nofeasible solution in G�, the algorithm turns to the next bottleneck graph. Otherwise, it callsprocedure Allocate, whose task is to select the centers. After this procedure is applied to allgraphs G�, the solution with the minimal radius (among all the solutions produced by thealgorithm) is taken as our �nal solution for the balanced �-center problem.Procedure Allocate attempts to assign up to L�1 clients from V nC to each center, usinga ow computation. This process may leave some nodes of V nC unassigned. Next, each ofthese remaining nodes gets assigned, again using a ow computation, but this time ignoringthe balance constraints. The goal of the �rst ow phase is to ensure that the assignmentobtained by the two ow phases is \as balanced as possible", in the sense that if a center� 2 C has fewer than L� 1 clients, while some nodes are left unassigned, there is no way toimprove the situation by moving clients to �, while still restricting ourselves to G�. We referto the assignment obtained after both ow phases as the initial assignment, denoted 'I .Next, Procedure Partition(C; 'I) partitions the centers into two sets E and F , accordingto the initial assignment 'I . The set E essentially consists of the light (or empty) centers,i.e., those having fewer than L�1 clients (apart from themselves), and the set F contains theheavy (or full) centers, i.e., those having more than L�1 clients. Actually, the more delicatepart of the procedure involves specifying the classi�cation of those centers with preciselyL � 1 clients. Notice (see Figure 6) that E consists of the set E0 of centers having at mostL�2 clients, plus all the centers that can potentially transfer clients to the ones in E0 (alongaugmenting paths). We show (see Claim 3.4) that the �rst ow phase guarantees that Econtains no center, � with more than L� 1 clients, since otherwise we could transfer clients8



If jV j > L � � then return \failure".For � = 1 to jEj do1. Choose a maximal independent set in G2�. Let this set be C = f�1; �2; : : : ; �`g.2. If ` > � then go to Next.3. Let �G1; : : : ; �Gm be the connected components of G2�.4. Let �i = d j �Vj jL e, for 1 � i � m.5. If Pi �i > � then go to Next.6. Let Ci � C be the centers in connected component �Gi.7. For i = 1; : : : ; m:Call (Ci�; 'i�) Allocate( �Gi; L; Ci).8. Let '� be the union of the partial assignments 'i�, and C� = SiCi�.Next:End-forSelect the assignment (C�; '�) with the minimal radius R(S), for 1 � � � jEj.Figure 4: Algorithm Select Centers(G;L; �)from � to other centers in E and increase the ow in GF1(C), the ow graph with the loadconstraint.For the nodes being assigned to centers in E , this assignment is �nal. For the remainingnodes the algorithm appoints a minimal number of additional centers (if jCj < �, and theload constraint is not satis�ed). This is done by creating an auxiliary \neighborhood graph"connecting the centers, constructing a spanning forest of the centers of F in this graph, andapplying a tree-contraction procedure, Tree Contract, to each tree.The main algorithm, Select Centers(G;L; �), is presented in Figure 4. This algorithmcalls Procedure Allocate, presented in Figure 5. Procedure Allocate, in turn calls threeother procedures: Procedure F low graph (which was described in Figure 3), ProcedurePartition(C; 'I) (given in Figure 6), and Procedure Tree Contract( ~G) (given in Figure 7).
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1. Call GF1  F low graph(C; V n C; 2c�; L� 1; 1; 1).2. Compute the maximum integral ow fF1 in the graph GF1.3. De�ne the partial assignment, '1 as follows: �j serves itself and those nodes v 2 V nCthat in the ow fF1 receive ow from �j.4. Let V 0 be the set of nodes assigned to centers by '1.5. Call GF2  F low graph(C; V n (V 0 [ C); 2c�;1; 1; 1).6. Compute the maximum fF2 ow in the graph GF2.7. Assign each node a center according to the ow fF2 . Denote this assignment by '2,and let 'I = '1 [ '2.8. Call (E ;F) Partition(C; 'I).9. For every center � 2 C, let Bin(�) = S'I (�).10. De�ne ~G = (F ; ~E), where~E = f(�; �0) j �; �0 2 F ; 9u; v 2 V s.t. v 2 Bin(�) and u 2 Bin(�0) and there is anedge between u and v in G2�g.11. Let ~G1; : : : ~Gl be the connected components of ~G.12. Call ( ~Cj; 'jF ) Tree Contract( ~Gj) for every connected component.13. Let '(v) = 'I(v) if 'I(v) 2 E , and let '(v) = 'jF (v) if 'I(v) 2 F \ ~Gj.14. Let CF = E [ Sj ~Cj.15. Output (CF ; '). Figure 5: Procedure Allocate(G;L; C)
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1. Let E0 be the set of centers having at most L� 2 nodes assigned to them by 'I.2. Set Ej+1 = Ej [ f� 2 C j 9v 2 V nC; 9�0 2 Ej;dist(�; v) � 2 � c�; dist(�0; v) � 2 � c�; 'I(v) = �g:3. Let E be the largest set Ej obtained in this process, and let F = C n E .4. Return (E ;F). Figure 6: Procedure Partition(C; 'I)3.2 Correctness and analysisIn step 2 of the algorithm Select Centers(G;L; �), we skip the current �, when the sizeof the maximal independent set is greater than �. This action is justi�ed by the followingclaim.Lemma 3.2 [HS86] If the maximal independent set, C, selected in step 1 of algorithmSelect Centers(G;L; �) has size jCj > �, then there is no solution to the �-center problem(even without the balance constraint) with radius � c�.Proof: Assume there is a solution (C 0; '0) to the unbalanced � center problem with radius� c�. This means that the graph G� can be covered with � stars, where the stars are formedaround the centers of C 0 according to the assignment '0 in this solution. These � starsturn into � cliques is G2�. At most one node from each clique can appear in any maximalindependent set. Therefore the size of any maximal independent set in G2� is at most �, butC is an independent set in G2� with size greater than � ; a contradiction.Having an independent set of size � is su�cient for producing a feasible solution forthe �-center problem with no balance constraint. In the balanced problem, some addi-tional constraints must be satis�ed. These constraints appear in lines 3-5 in AlgorithmSelect Centers(G;L; �). Their necessity is justi�ed by the next lemma:Lemma 3.3 Let �G1; : : : ; �Gm be the connected components of G2�, where �Gj = (�Vj; �Ej), andlet �j = d j �Vj jL e. If P�j > �, then there is no feasible solution for the balanced problem withradius � c�.Proof: Assume that there exists a feasible solution (C 0; '0) for the balanced �-center problemwith radius b � c�. Then the graph G� can be covered with � stars, where each star has11



1. Let ~C = f�1; : : : ; �mg be the nodes of ~G.2. For every 1 � j � m, let Carry in(�j) ;3. Construct a spanning tree in ~G.4. Repeat(a) Pick an arbitrary leaf � of the tree.Let jBin(�)j = iL + �, where 0 � � < L.(b) Pick (i� 1) additional centers from the nodes in Bin(�),and add them to ~C.(c) Distribute i(L � 1) nodes among the i centers, assigning L nodes to each center(including itself), and assigning �rst the nodes in Carry in(�).(d) Let Carry out(�) be the set of � unassigned nodes of Bin(�).(e) Let �0 be the parent of � in the tree.(f) Set Carry in(�0) Carry in(�0) [ Carry out(�),and set Bin(�0) Bin(�0) [ Carry out(�).(g) Remove � from the tree.5. until the tree consists of a single node.6. For the last remaining node �, execute steps (a) to (d).If jCarry out(�)j > 0, pick an additional center from this set and assign all the othermembers of Carry out(�) to it.7. Return the resulting assignment ( ~C; ~') for the nodes of Bin(�), � 2 ~G.Figure 7: Procedure Tree Contract( ~G)
12



at most L nodes. Notice that G� and G2� induce the same partition of V into connectedcomponents, namely �V1; : : : ; �Vm. A center can serve only nodes in its connected component.Therefore, the connected component �Vj must have at least �j centers. Since (C 0; '0) is afeasible solution, Pmj=1 �j � �.Let b be the radius of the optimal solution, let Xopt = fx1; : : : x�g be the set of centerschosen in an optimal solution, and let 'opt be an optimal assignment associated with thesecenters. There exists an integer �b, such that b = c�b , since G is a complete graph, andthe edge weights obey the triangle inequality. Let us analyze the solutions produced by ouralgorithm for � = �b.We �rst show that for G�, � = �b, the initial assignment can be modi�ed into feasibleassignment, even if the assignment of all the nodes in S'I (E) remains unchanged. Thede�nition of the set E appears in Figure 6.Claim 3.4 Each center in E has at most L� 1 clients.Proof: Assume that there exists a center � 2 E with more than L� 1 clients assigned to itby 'I . Then there exists a j 6= 0, such that � belongs to Ej but does not belong to any Eifor i < j. If this is the case then there exists a v 2 V n C and �0 2 Ej�1 such that v can betransferred to �0. By asequence of such transfers E0 will be reached. Each center in E0 hasless than L � 1 clients, therefore this new client can be added without disobeying the loadconstraint. The ow corresponding to this assignment is a legal ow in GF1 and is strictlygreater than the maximum ow in this graph, a contradiction.Lemma 3.5 The partial solution (E ; 'I jS'I (E)) can be extended to a total feasible solution.Proof: Let E = f�1; : : : ; �kg, and letXE = fx 2 Xopt j 'opt(�) = x; � 2 Eg:The set XE is the set of \optimal centers" that in the optimal assignment serve the centersin E . We proceed by proving the following claims.Claim 3.6 'opt(�) 6= 'opt(�0) for every �; �0 2 E .Proof: In G�, each x 2 XE is the center of a star with radius � b whose leaves are the nodesof S'opt(x) n x. In G2�, each such star turns into a clique. The set E is an independent set inG2�, therefore it contains at most one node from each set S'opt(x).Corollary 3.7 jXE j = jEj. 13



Claim 3.8 S'I (F) \ S'opt(XE) = ;.Proof: The proof is by contradiction. Suppose there exists some v 2 S'I (F) \ S'opt(XE),and let 'opt(v) = x, x 2 XE . By the de�nition of XE , there exists a center � 2 E , such that'opt(�) = x, therefore dist(v; �) � dist(�; x) + dist(x; v) � 2c�. But 'I(v) 2 F , therefore bythe de�nition of E , dist(�; v) > 2c� for every � 2 E ; a contradiction.Therefore, S'opt(XE) � V n S'I (F) = S'I (E). Every node served by XE in the optimalassignment is served by a center in E under the assignment 'I . Therefore we can dedicatethe centers in E to serve the set S'I (E), and the assignment 'IjS'I (E) can be extended to atotal feasible assignment (e.g. 'opt jS'I (F)). This completes the proof of Lemma 3.5.We took care of the nodes assigned to centers in E . The centers in F might be overloaded,so we have to appoint new centers. Let Bin(�) = S'(�) and let ~G = (F ; ~E), where ~E =f(�; �0) j �; �0 2 F ; 9u; v 2 V s.t. v 2 Bin(�) and u 2 Bin(�0) and there is an edge betweenu and v in G2�g. Next we show, that a feasible solution can be produced, even if we considereach connected component ~Gj of ~G separately. That is, lettingBin( ~Gj) = [�2 ~Gj Bin(�);there exists a feasible solution where the nodes of Bin( ~Gj) are served only by nodes fromBin( ~Gj). This claim justi�es line 12 of Procedure Allocate.Claim 3.9 Let x be an optimal center, such that x 2 Bin( ~Gj). Then in the optimal assignment,x does not serve nodes in Bin( ~Gi), i 6= j.Proof: Since x 2 Bin( ~Gj), its distance from every u 2 Bin( ~Gi), i 6= j, is at least b+ 1, butthe radius of the optimal solution is only b. If there existed a u 2 Bin( ~Gi), i 6= j such thatdist(u; x) in the graph G� is � b, then there would be an edge between u and x in the graphG2�, and then u 2 Bin( ~Gj), a contradiction. TZIUR!!!Claim 3.10 Let x 2 Xopt be an optimal center, and let v 2 Bin( ~Gm), such that 'opt(v) = x.Assume that 'I(x) 2 E . Then there does not exist a v0, such that v0 2 Bin( ~Gi), i 6= m, and'opt(v0) = x.Proof: Assume that there exists such a v0. The center x serves v in an optimal assignment,therefore dist(x; v) � b. Similarly dist(x; v0) � b. But then, by the de�nition of G2�, thereexists an edge between v and v0, therefore 'I(v) and 'I(v0) must be in the same connectedcomponent of ~G ; a contradiction. 14



We have already set up a one-to-one correspondence between the centers in XE and thecenters in E . No center in XE belongs to [Bin( ~Gi). The last two claims show that anx 2 X nXE serves clients in at most one connected component ~Gi:Claim 3.11 There exists a partition of Xopt nXE into l subsets X1; : : : ; X l, corresponding to~G1; : : : ; ~Gl respectively, such that a center x 2 Xj does not serve nodes in Bin( ~Gi) for i 6= j.Recall that each node of ~G corresponds to a center and its clients that are assigned toit by 'I . Two nodes in ~G are connected if they are \near". We have already seen thatwe can consider each connected component of ~G separately. In each component a spanningtree is constructed. Since some of the centers are overloaded, we have to appoint additionalcenters. We do this proceeding along the spanning tree from the leafs upwards. Assume thatthere are iL + �, 0 � � < L nodes in Bin(�), that is iL + � nodes are assigned to � by 'I .One center, �, was already appointed by 'I . We arbitrarily choose i � 1 new centers fromBin(�) and assign each of them L� 1 clients. The number of nodes not taken care of at thisstage of the algorithm is �. Let �0 be the parent of � in the spanning tree. The � nodes fromBin(�0) are added to the set Carry in(�0) (this set is initially empty), and Bin(�0) is set toBin(�0) [ Carry in(�0). The leaf node, �, is pruned. Once all the children of �0 are pruned,we appoint additional centers in Bin(�0) in the same manner as for �, while making surethat the nodes in Carry in(�0) get assigned to centers at this stage and are not forwarded tothe parent of �0 (see Lemma 3.13). This process is continued until there are no more nodesin the tree.During the execution of the tree contraction procedure, new centers are chosen. Let Hbe the set of the new centers, and let T = F [ H. The set T can also be partitioned into lsubsets T 1; : : : ; T l, corresponding to ~G1; : : : ; ~Gl respectively, such that a � 2 T j serves onlynodes in Bin( ~Gj), since each connected component was treated separately.Lemma 3.12 For every 1 � j � l, jT jj � jXjj.Proof: The tree contraction procedure, Tree Contract, assigns jT jj = d jBin( ~Gj)jL e centers toserve Bin( ~Gj). The centers in Xj are dedicated to Bin( ~Gj), but they might serve additionalnodes, that in our solution are served by centers in E . Therefore, the centers inXj must serveat least jBin( ~Gj)j clients. These centers obey the balance constraint, thus jXjj � d jBin( ~Gj )jL e.It remains to analyze the quality of the approximation. For the nodes in S'I (E), weassigned centers at distance � 2b. Now consider the nodes of S'I (F). The �nal assignmentis always determined at the leaves of the tree. Let Bininit(�) be the initial value of Bin(�),15



and let Binfinal(�) be the value of Bin(�) when it becomes a leaf of the current tree. Letv 2 Binfinal(�). Recall thatBinfinal(�) = Bininit(�) [ Carry in(�):If v 2 Carry in(�), then v was moved to Binfinal(�) from a descendant of � in the originalspanning tree. In the assignment process, we �rst assign centers to the nodes in the setCarry in(�).Lemma 3.13 All nodes in Carry in(�) are assigned centers from Binfinal(�).Proof: Let jCarry in(�)j = kL + �:Then jBinfinal(�)j � (k + 1)L + �;since jBininit(�)j � L. Therefore we choose at least (k + 1) centers from the nodes ofBinfinal(�).>From this lemma it follows, that a node v is moved at most once during the tree contrac-tion process. If 'I(v) = �, then 'F (v) belongs either to Binfinal(�) or to Binfinal(�0), where�0 is the parent of � in the spanning tree. In Binfinal(�0) there are nodes from Bininit(�0),and possibly also nodes v such that 'I(v) is �00, where �00 is a child of �0.Let 'F (v) = c and 'I(v) = �. There are several possibilities:1. 'F (v) 2 Bininit�. In this case:dist(v; c) � dist(v; �) + dist(�; c)� 2b+ 2b = 4bsince the radius of Bininit(�) is 2b.2. 'F (v) 2 Carry in(�). This means that c was initially assigned to one of the children� of �. Recall that in the graph ~G two centers � and � are connected if there is a nodeu 2 Bin(�) and a node v 2 Bin(�) such that there is an edge between u and v in ~G2�b- that is dist(u; v) � 2b.TZIUR!!! dist(v; c) � dist(c; �) + dist(�; u) + dist(u; w) +dist(w; �) + dist(�; v) � 10b16



>From the above we see that if � and � are neighbors in ~G then dist(�; �) � 6b.3. 'F (v) 2 Bininit(�0):TZIUR!!! dist(v; c) � dist(v; �) + dist(�; �0) + dist(�0; c)� 10b4. 'F (v) = c and c 2 Carry in(�0) n Bininit(�) (that is in 'I the node c was assigned toa center �00 that is a sibling of � in the spanning tree).TZIUR!!! dist(v; c) � dist(v; �) + dist(�; �0) + dist(�0; cnt00) +dist(�00; c) � 2b + 6b+ 6b + 2b = 16bAll the computations are polynomial in n. Therefore we have shownProposition 3.14 There exists a polynomial time approximation algorithm for the L-balanced�-center problem with approximation ratio 16.3.3 ImprovementsFurther improvement in the approximation ratio can be achieved by modifying the algorithm,and making a more careful choice of centers and sets Carry in during the tree contractionphase, reducing the approximation ratio to 10. To achieve this, observe the following. First,the clients of centers belonging to E are at most at distance 2b from their centers. Secondly,if v is assigned to a center c in its original bin, then dist(v; c) � 4b.Let �0 be the parent of � in the spanning tree. The nodes � and �0 are connected in ~G.Therefore there exists w(�) 2 Bininit(�) and v(�) 2 Bininit(�0), such that dist(w; v) � 2b.Thus dist(w; �0) � dist(w; v) + dist(v; �0)� 2b+ 2b = 4bWe call the vertex w(�) special and the vertex v(�) nearset. If Carry out(�) 6= ; then weinclude w(�) in Carry out(�). 17



Let �1; �2; : : : ; �l be the children of � in the spanning tree. Assume that the sets Carry out(�i)are already de�ned, and now the algorithm takes care of the set Binfinal(�). At this pointchoose the vertices that will belong to Carry out(�) (the size of the set is already known,the set must include w(�) and all the other vertices must belong to Bininit(�)). Now, let uslook at the vertices v(�1); : : : ; v(�l). Notice that it is possible that v(�i) = v(�j), for i 6= j.Let package(v) = [j2A(v)Carry out(�j) [ fvg;where A(v) is the set of centers �j for which v is the nearest node of w(�j). Letjpackage(v)j = kL+ �:Notice that jCarry out(�)j < L for any center �. Therefore if jpackage(v)j = kL + � thenare at least k distinct special nodes. Appoint any k of the special nodes belonging to v ascenters and distribute kL nodes of package(v) between them. Let u be such a node, and csuch a center, where u 2 Carry out(�j) and c = w(�m). Thendist(u; c) � dist(u; �j) + dist(w; �j) + dist(w(�j); v) + dist(v; w(�m))� 2b + 2b+ 2b+ 2b = 8bThe \leftovers" from the sets package(v) will be served by a subset of the nearest nodes.In each set package(v) there is a distinct nearest node, v. There are less than L nodes ofpackage(v) that do not get served by special nodes. Let there be m \packages" that belongto �, then there are m special nodes and less than mL nodes that are \leftovers". Thereforeall these nodes can be served by a subset of the special nodes. In this case:dist(u; c) � dist(u; �j) + dist(�j; w(�j)) + dist(w(�j); v) + dist(v; �) + dist(�; v0) � 10b;where v0 is a nearest node (not necessarily of u's set).The rest of the nodes belong to Bininit(�) and are either in Carry out(�) or get servedby centers belonging to Bininit(�). Hence we get:Proposition 3.15 There exists a polynomial time approximation algorithm for the L-balanced�-center problem with approximation ratio 10.If � = O(logn), then there exists a di�erent approximation scheme achieving an ap-proximation ratio of 4. The algorithm achieving this approximation ratio is depicted inFigure 8.As in the previous case, let us analyze the algorithm for the bottleneck graph G� asso-ciated with c� = Ropt(G;L; �). Let us denote this radius by b. Let Xopt = fx1; :::; x�g be18



For � = 1 to jEj do:1. Choose a maximal independent set C = f�1; :::; �k0g in G2�.2. If k0 > � then skip to the next �.3. Cycle through all possible vectors �s = (s1; :::; sk0) such that 8i si � 0, and P si = �.4. For each such vector �s do:Choose a set C 0 consisting of si arbitrarily chosen points in every neighborhood �G�(�i)in G� /* notice jC 0j = � */If not successful then skip to next �sCall GR  F low graph(C 0; V n C 0; 4 � c�; L� 1; 1; 1)Compute the maximum ow in GR.If the maximum ow is jV n C 0j then go to Success5. End-forEnd-forSuccess: Run Assign(G�; C 0; L)Figure 8: Algorithm Log Centers(G;L; �)

19



an optimal solution. Let C = f�1; :::; �k0g be the set chosen in step 1 of our algorithm. Foreach xi, there exists a �j, such that �j is a neighbor of xi in G2b (otherwise the set C [ fxigis an independent set and c is not maximal). An xi can be a neighbor of several �j's, butlet us arbitrarily associate one chosen �j with each xi. Let s0i denote the number of di�erentvertices xj that are associated with �i in this way. The vector �s0 = fs01; :::; s0k0g satis�es8i s0i � 0 and P s0i = �, and thus corresponds to one of the vectors considered by the al-gorithm. In examining this vector, the algorithm placed s0i arbitrary centers, fvi1; :::vis0ig, in�i's neighborhood in Gb. Let xi1 ; :::; xis0i be the optimal centers associated with �i. Let usarbitrarily match the xij 's with the vij in �i's neighborhood. Each such optimal center, xijis at distance at most 2b from �i, and each new center, vij, is at most at distance b from �i,therefore dist(xij ; vij) � 3b. Since Xopt is an optimal solution to the problem with radius b,our solution has radius 4b.As for the complexity of the algorithm, note that the outer loop is carried out polynomi-ally many times in � and in n. There are �2�� � � 22�p� possible �s-vectors for each trial. Since� = O(logn), this is polynomial in n, as are all the other steps of the algorithm.Proposition 3.16 There exists a polynomial time approximation algorithm for the L-balanced�-center problem with approximation ratio 4, under the additional assumption that � = O(logn).
4 The balanced weighted centers problemIn this section we consider the weighted version of the L-balanced �-centers problem. It isassumed that every node v has a weight !(v), where !(v) is a positive real number, and welook for a solution with minimal radius, in which the sum of the weights of the centers is atmost � (notice that � is a real number now). For U � V , de�ne !(U) = Pu2U !(u).De�nition 4.1 The L-balanced, �-weighted centers problem is de�ned as follows:Input: Graph G = (V;E) with weights !(v) on the nodes and c(u;v) on the edges, an integerL, and a real � > 0.Goal: Select an L-balanced center assignment (C; '), such that !(C) � �, minimizing theradius R(S) of the induced assignment tuple S.Let us denote the optimal radius by Rwopt(G;L; !; �).As a basis for the approximation we shall make use of an initial solution for the unweightedproblem, that enjoys the minimum cardinality property de�ned below.20



For � = 1 to jEj do1. Choose a maximal independent set in G2�. Let this set be C = f�1; �2; : : : ; �`g.2. Call Procedure (Ĉi; '̂i) Allocate(Gi; L; Ci) for each connected component Gi of G2�.3. Let (Ĉ; ') = [(Ĉi; '̂i).4. Construct Ĝ = (V̂ ; Û ; Ê) as follows: let V̂ = Ĉ = f�1; : : : ; �mg, and let Û = V . Let(�i; v) 2 Ê i� dist(�i; v) � 11c�. The weight of the edge (�i; v) is !(v).5. Compute a minimum weight perfect matching in Ĝ.6. If there is no perfect matching in the graph or the weight of the matching is greaterthan �, then go to the next �.7. Otherwise let C 0 = fv1; : : : vmg, where �i was matched to vi in the minimum weightperfect matching.8. Call GF  F low graph(C 0; V; 21 � c�; L� 1; 1; 1).9. Compute the maximum integral ow fF in GF .10. Assign each node a center according to the ow fF .End-forReturn the assignment with the smallest radius.Figure 9: Algorithm Weighted Centers(G;L; �)De�nition 4.2 Consider an instance of the L-balanced �-weighted centers problem. Let (C; ')be a solution to the problem without the weight restriction. Then (C; ') is aminimum cardinalitysolution for the problem if for every optimal solution (Xopt; 'opt) for the weighted problem, andfor every A � C, the subset of centers of X � Xopt serving the clients of A satis�es jXj � jAj.The minimum cardinality solution (C; ') is said to have approximation ratio t if its radius isat most t � Rwopt(G;L; !; �).The approximation algorithm Weighted Centers(G;L; �) is given in Figure 9. The ideais to start with applying Procedure Allocate and generate a minimum cardinality solution,and then use Hall's theorem to derive the ratio bound. When �nding a solution for theunweighted problem, there is no bound on the number of centers. The analysis is given bythe following lemmas. 21



Lemma 4.3 The call to Procedure Allocate in line 2 of algorithm Weighted Centers(G;L; �)returns a minimum cardinality solution (ignoring the node weight constraint) with approximationratio 10.Proof: Let A � Ĉ, and partition A into two sets, AE = A \ E , and AF = A n AE . LetX � Xopt be the set of optimal centers for the weighted problem that serve the clients ofA. In order to prove that the solution provided by the procedure is a minimum cardinalityone, we shall have to show that jAj � jXj. De�ne XAE � X to be the set of optimalcenters serving AE . Let XAF = X n XAE . A proof along the lines of Claim 3.6 shows thatjXAE j = jAE j. It is easy to see that the clients of AF are not served by XAE using argumentsthat appear in Claim 3.8. Next we claim:Claim 4.4 jXAF j � jAF j.Proof: The set F (together with its clients) is partitioned into connected components. Oursolution is such that in each connected component at most one center has fewer than Lclients. Let f�i+1; : : : ; �kg be the centers in one of the connected components of F . Thenthese centers serve at least (k � i)L + 1 clients, and therefore there are at least this manyoptimal centers associated with them. An optimal center having clients in one connectedcomponent of F cannot have clients from another component (see Claim 3.11).Recall that X = XAE [XAF . We have shown that jXAE j = jAE j and jXAF j � jAF j, andXAE \XAF = ;, therefore jXj � jAj. This completes the proof of Lemma 4.3.Procedure Allocate returns a solution with approximation ratio 10, therefore this minimalcardinality solution (that does not necessarily obey the weight constraint) is such that itsradius is at most 10 times larger than the ratio of the optimal solution. It remains to beseen how our solution meets the weight constraint.Lemma 4.5 Algorithm Weighted Centers(G;L; �) is a polynomial time algorithm for the L-balanced �-weighted centers problem with approximation ratio 21.Proof: In the bipartite graph, Ĝ, every center of the minimum cardinality solution is con-nected to every vertex at distance at most 11b, where the weight of an edge is the weightof the node the center is connected to. The algorithm looks for a minimum weight perfectmatching in Ĝ.We need to argue that for the optimal b such a perfect matching exists, and moreover,that !(C 0) � �. It su�ces to show that there exist a perfect matching between V̂ = Ĉ and asubset of size m of X̂, where X̂ is a subset of the centers in some optimal solution X to theproblem (i.e., a solution with radius Rwopt(G;L; !; �) and weight !(X) � �). If this is the22



case, then the weight of the minimum weight perfect matching is at most the weight of theoptimal solution. By Hall's theorem there exists such a perfect matching i� for every subsetM of V̂ , the number of neighbors of M in X̂ � Û is at least the number of nodes in M .Let M 0 be the set of clients of M in the solution (C; '), and let X 0 be the set of centersserving these clients in the optimal solution. Notice that dist(M;X 0) � 11b, since thedistance of � to its clients is at most 10b, and the distance of the client to its optimal centeris at most b. Therefore the set X 0 is a subset of the set of neighbors of M in the graph Ĝ.Finally, by the de�nition of a minimum cardinality solution, jX 0j � jM j. This proves theexistence of a perfect matching as desired.Let f(�1; v1); : : : ; (�m; vm)g be the selected minimum weight perfect matching. The cen-ters of the L-balanced �-weighted centers problem will be C 0 = fv1; : : : ; vmg. We assign themclients using Procedure F low graph, as described in Section 2. There exists an L-balancedassignment with radius 21b, since vi is at most at distance 11b from �i, and �i's clients areat most at distance 10 from �i.To summarize:Proposition 4.6 There exists a polynomial time approximation algorithm for the L-balanced,�-weighted centers problem with approximation ratio 21.5 Algorithms for �-dominating setsLet us now consider the dual problem, where given �, the maximal allowable distance of anode from the set of centers to be chosen, and L, a bound on the number of clients assignedto a center, we want to minimize the number of centers.De�nition 5.1 The L-balanced �-dominating set problem is de�ned as follows:Input: Graph G(V;E), integers L; � � 1.Goal: Select an L-balanced, �-dominating assignment (C; '), such that C is of minimal size.Recall that in the �-dominating set problem, a bound � is given on the maximal distancebetween a node and its center and the aim of the algorithm is to minimize the number ofcenters. We denote the optimal solution to this problem by C(G;L; �). We now give anapproximation algorithm with ratio dlnne.In order to approximate the problem, we use an iterative algorithm that is greedy in thefollowing sense. We start with an empty set C. At each iteration we examine the possibilityof adding to C any vertex v not in C, such that C [ fvg can serve a maximum number23



1. Call G(C;L) F low graph(C; V n C; �; L� 1; 1; 1):2. Compute the maximum integral ow function fG� in G�.3. Set '(v) to be the center � such that fG�(�; v) > 0.Set '(�) = � for any center � 2 C.Figure 10: Algorithm Comp Min for computing a minimal uniform function for C and L.clients (but possibly not all of them), when imposing the restriction that no server servesmore than L clients. Before stating the main algorithm we introduce the following auxiliaryde�nitions and lemmas.An assignment is feasible if it meets the distance and load constraints. The assignmentwe consider may be partial assignment, i.e., not every node of the graph is assigned a center.Given a feasible (possibly partial) assignment ' into a set C; denote by U(') the set ofunassigned clients, namely, U(') = V nDom(');where Dom(') denotes the domain of '. For any feasible assignment ' de�ne the excess of' as X(C; ') = jU(')j:In particular, for any complete feasible function ', X(C; ') = 0. Let P denote the set offeasible functions for given C and L. DenoteX(C) = min'2PfX(C; ')g:Note that X(;) = jV j. We call an assignment function ' such that X(C) = X(C; '), aminimal function for C and L. In Fig. 10 we describe procedure Comp Min that computesa minimal function for a given set C and integer L. (We allow a center to serve only L� 1clients, since we always assume that a center serves itself.)Fact 5.2 For a given graph G integers L and � and the set of centers C, let '0 be an arbitraryfeasible (possibly partial) assignment. Let F (C) be the maximal ow obtained by procedureComp Min. Then1. X(C; '0) � jV j � F (C).2. X(C) = jV j � F (C). 24



1. C  ;2. While X(C) > 0 do(a) Choose a vertex � 2 V n C such that X(C [ f�g) is minimal, using ProcedureComp Min.(b) C  C [ f�g.End-While Figure 11: Algorithm Dominating Set(G;L; �)Proof: In computing F (C) we have augmented the ow as much as possible, consideringthe constraint that a server does not serve more than L� 1 customers (plus itself). Assumethat part 1 does not hold, namely,X(C; '0) < jV j � F (C):Then, F (C) < jV j�X(C; '0). Let us de�ne a new ow function as follows. For every center� 2 C send a unit of ow to every node it serves in the assignment '0 (excluding itself). Inthis ow function every node served by the centers receives a unit of ow, therefore the totalamount of ow obtained by this process is jV j �X(C; '0) and it exceeds the maximal owF (C). This leads to a contradiction. Part 2 of the claim follows directly from part 1.We now describe the main algorithm as follows. The algorithm operates sequentially ina greedy fashion, adding at each iteration a new vertex � to the set of centers, in such a waythat it minimizes the new excess, X(C [ f�g). The formal description is given in Figure 11.
5.1 AnalysisClearly, when the process terminates, C is a complete feasible function. (Note that such afunction always exists if L � 1 since every center may serve itself).Let us denote by Ci the set C at the beginning of the i'th iteration, where C0 = ;.Consider the situation at the beginning of some iteration i, and let C = Ci. Let C� bean optimal choice of centers for the given instance and let '� be a corresponding optimalassignment. Denote TI = C \ C� ; TO = (V n C) \ C�:25



For any feasible function '; denote by hit('; '�) the number of vertices that were assignedto the same center in C� and C, namely,hit('; '�) = jfv 2 V j '(v) = '�(v)gj:Let OPT denote the set of minimal assignments for C and L,OPT = f' j X(C; ') = X(C)g:Let '̂ be a function in OPT , for which hit('̂; '�) is maximal (among the functions in OPT ),i.e., hit('̂; '�) = maxfhit('; '�) j ' 2 OPTg:Lemma 5.3 For any vertex v 2 U('̂), '�(v) 2 TO:Proof: Assume the contrary, namely, there is a vertex v 2 U('̂), such that'�(v) = �; � 2 TI : (1)Clearly, jS'̂(�)j = L, for otherwise we can assign v to �, reducing X(C). Since v is assignedto � in '�, and '� is feasible, there is a vertex w 2 S'̂(�) n S'�(�). Let '0 be an assignmentidentical to '̂, except that '0(v) = '�(v), and '0(w) is unde�ned (namely, we take w outof S'0(�)). Clearly, this assignment is feasible. Also note that v 2 U('̂) implies thatX(C; '0) = X(C; ') = X(C). Thus, '0 2 OPT . Note, however, that by the way '0is de�ned, hit('0; '�) = hit('̂; '�) + 1, contradicting the assumption that '̂ maximizeshit('; '�) among the functions in OPT .We now wish to show, that there is a vertex in TO whose addition to C reduces the excessX(C) by a fraction of 1TO .Lemma 5.4 There exists a vertex � 2 TO such thatjS'�(�) \ U('̂)j+ 1 � jU('̂)jjTOj :Proof: Note that U('̂) = TO [ [�2TO (S'�(�) \ U('̂)) :Since S'�(�) \ S'�(�0) = ; for every � 6= �0;jU('̂)j = X�2TO(jS'�(�) \ U('̂)j+ 1):It follows from the pigeonhole principle, that at least one of the terms in the summation isof size jU('̂)j=jTOj or more, thus proving the desired claim.Let �0 be the vertex whose existence is asserted by Lemma 5.4. Denote C 0 = C [ f�0g.26



Lemma 5.5 X(C 0) � X(C)� jS'�(�0) \ U('̂)j � 1:Proof: De�ne '0 to be an assignment equivalent to '̂ except that if '�(v) = �0 and v 2 U('̂),then set '0(v) = �0. Clearly, every vertex that is now in S'0(�0), decreases X(C) by 1(this follows from the fact that every such vertex was unassigned in '̂). Furthermore, thefeasibility of '� assures that the vertex �0 serves no more than L customers in '0, and thus '0is feasible. Finally, note that � itself is extracted from U('0). Therefore X(C 0) � X(C 0; '0) �X(C; '̂)� jS'�(�0) \ U('̂)j � 1, and the desired claim follows.Lemma 5.5 enables us to estimate the progress made by the algorithm in each iterationi, in terms of reducing the excess X(Ci).Lemma 5.6 X(Ci+1) � X(Ci) � �1� 1jC�j� :Proof: It follows from Lemmas 5.5 and 5.4 that, for �0 and C 0 as de�ned above,X(C 0) � X(C)�jS'�(�0)\U('̂)j�1 � X(C)�jU('̂)jjTOj = X(C) 1� 1jTOj! � X(C) 1� 1jC�j! :The choice of Ci+1 now implies thatX(Ci+1) � X(C 0) � X(Ci) �  1� 1jC�j! :Corollary 5.7 X(Ci) � X(C0) � �1� 1jC�j�i = jV j � �1� 1jC�j�i:Since the function (1� 1x)x; x � 0 is an increasing function that converges to 1e as x tendsto 1, we conclude that after k = jC�j � dlnne iterations, X(Ci) < 1, and hence X(Ci) = 0.Since we add a single vertex to the set in each iteration we end up with at most jC�jdlnnecenters, thereforeTheorem 5.8 Algorithm Dominating Set(G;L; �) is a dlnne approximation algorithm for the��dominating set problem.6 k-tolerant setsFinally, we give an approximation algorithm with ratio k(logn + 1) for �nding a k-tolerantset of centers.De�nition 6.1 The k-tolerant center set problem is de�ned as follows:Input: Given a graph G=(V,E), A;B � V , and an integer k � 1.Goal: A minimal size k-tolerant center set C .27



Recall that we de�ned the k-tolerant sets problem as follows: Let A � V be the set ofpotential servers, and B � V the set of potential customers. A k-tolerant A-set for B (orsimply a k-tolerant set) is a subset C � A, such that for every v 2 B, either v 2 C (this ispossible only if v 2 A \ B) or there are k vertex-disjoint paths from v to C (in particular,to k distinct vertices in C). A solution to the k-tolerant set problem is such a set C � A ofminimal size.Again, we can show that the associated decision problem problem is NP-complete (say,by a reduction from SAT). We give an approximation algorithm with ratio k logn. Thisalgorithm generalizes the algorithm of [Lov75]. The result holds also for the interestingsubcase of the algorithm where A = B = V .Given a set of centers C and a vertex v, let f(v; C) denote the number of vertex-disjointpaths from v to vertices of C in G. Using standard ow techniques, it is easy to see that:Lemma 6.2 There is a polynomial time procedure F (v; C) for computing f(v; C).Proof: The procedure F (v; C) operates as follows. Let v be the source. Connect all thevertices of C to a sink vs, assign a capacity of 1 to all edges of G (plus the new edges to thesink), and capacity 1 to all the nodes. On the resulting ow-graph, compute the maximumow from v to vs. This ow equals f(v; C).Algorithm Tolerant Centers(G; k) presented in Figure 12, computes a solution C. Thealgorithm �rst checks whether there is a feasible solution to the problem, that is, for everyv 2 B nA, there must exist k vertex disjoint paths from v to di�erent nodes in A. This canbe tested using Procedure F (v; A). If this condition holds, then C = A is a feasible solution,and we can try to minimize the number of centers.For the analysis we need the following fact (for derivation see [Lov75]).Fact 6.3 [Lov75] Let tj; aj, 1 � j � n be integers such that aj = P1�i�j i � ti for every1 � j � n. Then X1�i�n ti = ann + X1�i�n�1 aii(i+ 1) :Let � denote the size of the optimal set C, and let t = jCj for the set C selected by thealgorithm.Lemma 6.4 t � �k(logn + 1).Proof: 28



For every v 2 B n A compute f(v; A).If 9v s.t. f(v; A) < k then return (`No solution')ElseC  ;T  BWhile T 6= ; do:For every v 2 A n Clet G(v; T; C) = fw 2 T j f(w;C [ fvg) = f(w;C) + 1gand let g(v; T; C) = 8<: jG(v; T; C)j; if v =2 B;jG(v; T; C)j+ 1; otherwise:Let v0 be the vertex maximizing g(v; T; C).C  C [ fv0gT  T n fw j f(w;C) = kg n fv0g.End-while Figure 12: Algorithm Tolerant Centers(G; k)Consider the sequence of sets (Ti; Ci) generated during the iteration i of the algorithm,and let vi0 = CinCi�1, be the vertex added to C in iteration i. For each such pair (Ti�1; Ci�1),let gi denote the number of paths added to vertices in Ti�1 by the choice of vi0 in iterationi, i.e gi = g(vi0; Ti�1; Ci�1). Note that gi is a non-increasing sequence starting with n or less.Let (T̂i; Ĉi) (for i = n; : : : ; 1) denote the �rst pair (Tj; Cj), for whichg(vj+10 ; Tj; Cj) � i;and let ai = jT̂ij. Let ti, for 1 � i � n, denote the number of steps of the algorithm betweenT̂i and T̂i�1. Then k � aj � X1�i�j i � ti for every 1 � j � n:The inequality follows from the fact that k � aj is an upper bound on the number of timeswe have to hit the set T̂j before the algorithm is over, while the sum on the other side of theinequality is a lower bound on the number of hits the algorithm scores from this phase untilthe end of the algorithm. Notice, that if a v 2 T is chosen as a center, it is removed from Twithout having to hit it k times.
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By Fact 6.3, t = X1�i�n ti � k � ann + X1�i�n�1 k � aii(i+ 1) : (2)Let �i denote the size of the minimal set Ci that solves the problem for the vertices of T̂i.Then � � �i � ai=i, since at most i vertices can be removed from T̂i by adding a single newvertex to the set of centers. By (2) we gett � X1�i�n k�i � k�(logn + 1):
Proposition 6.5 There exists a polynomial time approximation algorithm for the k-tolerant setproblem with approximation ratio k(logn + 1).AcknowledgmentsWe would like to thank Madan Gopal and David Shmoys for helpful discussions.
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