How to Allocate Network Centers

Judit Bar-Ilan * Guy Kortzars T David Peleg *

November 23, 1992

Abstract

This paper deals with the issue of allocating and utilizing centers in a distributed
network, in its various forms. The paper discusses the significant parameters of center
allocation, defines the resulting optimization problems, and proposes several approxi-
mation algorithms for selecting centers and for distributing the users among them. We
concentrate mainly on balanced versions of the problem, i.e., in which it is required
that the assignment of clients to centers be as balanced as possible. The main results
are constant ratio approximation algorithms for the balanced k-centers and balanced
k-weighted centers problems, and logarithmic ratio approximation algorithms for the

p-dominating set and the k-tolerant set problems.

*School of Library and Information, The Hebrew University, Jerusalem 9xxxx, Israel. This work was
carried out while the author was with the Department of Applied Mathematics and Computer Science, The
Weizmann Institute of Science.

tDepartment of Applied Mathematics, The Weizmann Institute, Rehovot, 76100, Israel.
!Department of Applied Mathematics, The Weizmann Institute, Rehovot 76100, Israel. Supported in

part by an Allon Fellowship, by a Walter and Elise Haas Career Development Award and by a Bantrell
Fellowship.

1 Introduction

The problem of allocating and utilizing centers in a communication network is a major
issue in distributed network design. Among the various applications requiring the use of
centers are distributed databases, routing, distributed data structures, etc. ([HR88, ML77,
MK83, BG87, Pel90]). Using a collection of centers offers a convenient intermediate approach
between the fully centralized and the fully distributed solutions, and provides a reasonable
balance between the need for fault-tolerance and economical considerations. Unfortunately,
all but the simplest center allocation problems are NP-hard, and therefore are considered
unlikely to be tractable. In this paper, we discuss the significant parameters of center
allocation, define the resulting optimization problems, and propose several approximation

algorithms for selecting centers and for distributing the users among them.

In all variations of the center allocation problem considered in this paper, our goal is
composed of two parts. The first is to select a collection of centers C' = {6, ...,60,}, where
C C V and V is the set of the nodes of the network. The second is to assign each of the
remaining nodes in the network to one of the centers. We denote by ¢(v) the center that
is assigned to the node v, and we say that ¢(v) serves v. The pair (C,¢) determining the

center assignment is referred to as the assignment pair.

Let S,(6) denote the set of vertices assigned to the center 6, i.e.,

Sp(0) = {v | ¢(v) = 0}

A center assignment can thus be characterized by the collection of pairs

S= {(91; Snp(el))a R (gm S@(Qﬁ)}

such that §; € C, S,(0;) C V for every 1 < i < s and U; S,(6;) = V. We refer to the
collection § as an assignment tuple. We sometimes refer to S as a partition, when we wish
to ignore the centers and consider only the collection of subsets S,(6;). We shall use the two

representations, (C,¢) and S, interchangeably.

As accessibility is a major concern in distributed systems, the distance between clients
and their respective centers is an important design parameter in center allocation problems.
Consequently, given a collection of centers, one obvious assignment choice would be to select,
for every client v, the center nearest to it. A potential problem with this choice is that
it may conflict with another significant concern, namely, workload balancing. The nearest
center assignment might result in all (or most) sites using a single center (or a small subset of

centers). This is undesirable, since it overloads the chosen centers and may create bottleneck

problems. A possible way to overcome this situation is to bound the maximum number of
sites assigned to any particular center 6 by |S,(0)| < L, for some bound L. (Naturally L has
to be large enough, i.e., L > n/k). This paper concentrates on center problems that insist

on this maximal load requirement, referred to as balanced center problems.

It turns out that the two parts of the center allocation problems are not of equal difficulty.
Once the centers are selected, it is possible to assign the clients optimally using standard
flow techniques, as indicated in Section 2. We should therefore focus mainly on the harder
part of the problem, involving the selection of the centers. Our aim is to select the “best”
set of centers and the best assignment of nodes to the centers in a given network. There are

two natural ways to approach this problem:

1. Fixing the number of centers, x, and trying to minimize max{(dist(v, ¢(v))}.

2. Fixing a bound, p, on the maximal distance between a node and its center, and mini-

mizing the number of centers.

These problems are sometimes referred to as the k-centers and the p-dominating set problems
respectively. In both cases we consider the balanced versions of these problems, i.e., solutions
in which no center is assigned more than L clients. Both these problems are NP-hard (for
unbounded) (see [GJ79]), even without the load constraint. Therefore, we direct our efforts

toward attempting to approximate the optimum solution.

In the unbalanced case, i.e., with no constraint on the load, the two dual forms of the
problem were given approximation algorithms before. The k-centers problem was treated
in [HS86], and given a polynomial time algorithm with approximation ratio 2. The p-
dominating set problem can be formulated as a special case of the set cover problem of
[Lov75], for which the greedy algorithm described therein provides an approximation ratio
of log |V| + 1.

In Section 5 we present an approximation algorithm for the balanced p- dominating set

problem with approximation ratio [ln [V|].

The k-centers problem becomes harder with the introduction of the balancing require-
ment, and it is necessary to develop stronger techniques than the ones used in [HS86] in
order to overcome the difficulties resulting from the need to take the load constraint into
account. In Section 3, we present our first main result, which is an approximation algorithm
Select_ Centers(G, L, k) for the balanced s-center problem that achieves a constant approx-
imation ratio. Let us now outline the strategy on which our solution is based. Our starting

point is the elegant approximation technique of Hochbaum and Shmoys [HS86] for the un-

balanced x center problem. We start by choosing an initial set of centers using the algorithm
of [HS86]. After the initial centers are chosen, we assign the clients to these centers in two
phases using flow techniques. This initial assignment, ¢, does not necessarily obey the load
constraints. Now the centers are partitioned into two sets, namely, the “light” centers (those
that have fewer than L clients), and the “heavy” ones (those that have more). For the light
centers, this assignment is final; we prove that the specific choice of the initial assignment
@ guarantees that this does not harm the solution. For the heavy centers, however, some
rebalancing is necessary. Each connected component of the heavy centers with their clients
is treated separately. In each component, we construct a spanning tree, and apply a “tree-
contraction” algorithm whose task is to balance the loads on the centers. This algorithm
processes the spanning tree from the leaves up, and moves clients along the edges of the
tree, spreading them among the selected centers and other nodes in their neighborhood, as

necessary.

In Section 4 we consider the weighted variant of the problem, in which each node v
has a nonnegative weight w(v), and the feasibility constraint is that the selected collection
of centers satisfies Y_,ccw(v) < k. Again, an approximation algorithm for the unbalanced
version of this problem (with ratio 3) is given in [HS86], however, we see no immediate way of
modifying it for the balanced problem. The algorithm Weighted_Centers(G, L, k) proposed
for this problem in the current paper is based on a technique for converting solutions with
approximation ratio « for the unweighted problem into solutions with approximation ratio
2a+ 1 for the weighted problem. (The technique applies only for a specific type of solutions
for the unweighted problem, referred to as minimum cardinality solutions, but fortunately
the solutions generated by our unweighted algorithm Select_Centers(G, L, k) fall into this
category.)

Finally, we also consider the issue of fault tolerance. One common strategy for handling
this problem is based on assigning multiple centers for each client. This approach handles the
problem of center crashes, but does not attempt to handle the problem of communication
faults. We would like to exploit redundancy in order to enhance data availability in the
face of communication failures, including possible network partitions. Towards this goal, we
propose the concept of k-tolerant sets: Let A C V' be the set of potential servers, and B C V
the set of potential customers. A k-tolerant A-set for B (or simply a k-tolerant set) is a
subset C' C A, such that for every v € B, either v € C' (this is possible only if v € AN B) or
there are k vertex-disjoint paths from v to C' (in particular, to k distinct vertices in C'). A
solution to the k-tolerant set problem is such a set C' C A of minimal size. Note that when
A =V, such a set exists in every graph, regardless of its connectivity. For example, Figure 1

depicts a 3-tolerant center set in a 1-connected graph, where A = B = V. An approximation

NN
NN

_
AN

Figure 1: A l-connected graph and a 3-tolerant center set for it (darkened vertices denote

centers).

algorithm T'olerant_Centers(G, k) for the k-tolerant set problem is described in Section 6.

2 Preliminaries

2.1 The problem

The network is described by a connected undirected graph G = (V, E), |V| = n, with a
weight c¢(,) for every edge (u,v) € E, representing the length of the edge. The vertices
represent the sites of the network (or the processors located at these sites) and the edges

represent bidirectional communication channels between these sites.

Let us define some concepts concerning graphs. For two vertices u, w in G, let distq(u, w)
denote the length of a shortest path in G between those vertices, where the length of a path
is the sum of its edge weights. (In the above notation, we sometimes omit the reference to
G where no confusion arises.) The neighborhood of a vertex v € V' is defined as I'(v) = {w |

(w,v) € E}. Let (C,) be a given center assignment, and let

S ={(01,5,(01)), - -, (B, Sp(0:)) }

be the induced assignment tuple. In all our assignments, 6 € S,,(#); that is a center always
serves itself. For A C C, define

SW(A) = U Sw(g)

fcA

The following definitions formalize our measures for the quality of this assignment. We

first define the appropriate radius measure. Let

R(S,(6;)) = UEIIgL;}(}g_){dist(v, 6:)},

4

and let R(S) = max; R(S,(#;)). Next, the load of a center 6; is denoted
L(0;) = |5,(0:)],

and the maximal load of the assignment tuple S is £(S) = max;{£(6;)}. We say that a pair
(C, p) is p-dominating if the induced assignment tuple S satisfies R(S) < p, and L-balanced
if S satisfies £(S) < L.

Next let us define the basic notion of an approximation algorithm. This is a polyno-
mial time algorithm for an optimization problem, with some performance guarantee on the
quality of the produced solutions. The approzimation ratio of an approximation algorithm
for a minimization problem is the maximal ratio between the solution obtained by the algo-
rithm and the optimal solution, where the maximum is taken over all input instances to the

problem. A similar definition applies to maximization problems.

2.2 Assigning clients to fixed centers

This subsection describes how to handle situations in which the centers are already fixed, but
we are given control over the assignment, ¢, of centers to sites. As mentioned earlier, if one
relies solely on distance considerations, then the obvious choice is the nearest assignment,

N. This assignment satisfies
N) e {0; | dist(b;,v) < dist(0;,v), Y1 < j <|C|},

and is straightforward to compute. However, we are interested in balancing the work load
as well, that is, we want to minimize the radius of the assignment tuple, subject to the
constraint £(S) < L. Producing a balanced assignment is a variant of a partitioning problem
described in [BG87], Sect. 5.4.3, as the concentrator location problem, and solved via linear
programming or the flow methods of [Ber85, BG89]. In that problem the minimized function
is Y ,cv dist(v, p(v)). Our solution for assigning centers to clients is a slightly more involved

variation of that solution.

The procedure Assign(G,C, L), depicted in figure 2, solves the assignment problem. It
finds the minimal radius for which an assignment is possible using standard flow techniques
(cf. [Eve79]). We define the integral flow function fg : E +— ZT, where fg(e) is the flow
assigned to edge e. (We omit the definitions of flow functions and constraints they satisfy;
these definitions can be found in, e.g. [Eve79]). The assignment is constructed based on the

maximum flow in the appropriate flow-graph, G.

The flow graph is generated by Procedure Flow_graph(C,U, p, my, my, m3), presented in

Figure 3. This procedure is also used as a component in our later algorithms.

1. Let d = (dy, ..., dg) be the list of distances between the vertices of V' \ C' and the centers

in (', in increasing order.
2. Let the variable p run a binary search on d:

(a) Call G, < Flow_graph(C,V\ C,p,L—1,1,1).

(b) Compute the maximum integral flow function fg, in G,.

(a) Let b = min{d | the maximum flow in G4 is |V \ C|}.

(b) For every v in V '\ C set ¢(v) to be the center §; such that f¢,(6;,v) > 0.

Figure 2: Procedure Assign(G,C, L)

1. Construct a bipartite graph G' = (C,U, E'), with
E'={(0,v)|0€C, vel, dist(d,v) < p}.

2. Add two new vertices s and t. Connect s to every node in C'. Connect every node in
U to t.

3. Define capacities 7 by setting (s, 0) = my, v(0,v) = mg and y(v,t) = ms.

4. Output the resulting flow-graph.

Figure 3: Procedure Flow_graph(C,U, p,my, my, mg3)

The relationship between flow in the flow graphs G, constructed by Procedure

Assign(G, C, L) and the center assignment is established by the following lemma.

Lemma 2.1 There exists a feasible assignment of the clients to the centers in C' with radius d,
iff the maximum flow in Gy is |V '\ C/.

Proof: Let ¢ be a balanced center assignment with radius d. No center is assigned more
than L — 1 clients (plus itself). If p(v) = 6, then there is an edge in G4 between v and 6.
On each such edge it is possible to push one unit of flow, resulting in a total flow of at least

|V'\ C], while obeying the capacity constraint for the edges of type (s, 8).

Conversely, if there exists a flow of size |V \ C/|, then an assignment with radius d can be

constructed simply as described in procedure Assign(G,C,L). |

Corollary 2.2 Procedure Assign(G,C, L) returns an assignment with the minimal feasible

radius. |1

Since procedure Assign(G,C, L) requires polynomial time in n, we have shown:

Proposition 2.3 Given a graph G, a collection of centers C' C V, k = |C/, and a bound L, such

that L > 2, there is a polynomial time algorithm for computing an assignment ¢ : V' \ €'+ C
with an induced assignment tuple S satisfying £(S) < L and minimal radius R(S). 1

Using similar techniques it is possible to assign several centers to each client. Such an

approach may be useful for fault tolerance purposes, for instance.

Definition 2.4 The balanced t-assignment problem is defined as follows:

Input: Graph G(V, E), a collection of centers C' C V, integers L,t > 1.

Goal: A t-assignment ¢ : V' \ C — C" assigning ¢ centers to each vertex, and minimizing the
radius R(S) of the induced assignment tuple S, subject to the constraint £(S) < L.

The algorithm for solving this problem is a modification of the previous one. Procedure
Flow_graph(C,V \ C,p,L —1,1,t) is called with different values of the parameter p. It is
easy to see that there exists a feasible assignment iff the maximum flow is ¢- |V \ C|, therefore

the minimal p for which the maximum flow equals ¢ - |V \ C] is the minimum radius.

Proposition 2.5 Given a graph G, a collection of centers C' C V, k = |C/, and a bound L, such

that L > ™, there is a polynomial time algorithm for computing a t-assignment ¢ : V' \ C' — C*
with an induced assignment tuple S satisfying £(S) < L and minimal radius R(S). 1

3 The balanced k-center selection problem

In this section we turn to the selection problem, and present an approximate solution to the
problem in which the number of centers x, and a load constraint L, are given, and we want
to optimize the radius. Let us first give a formal definition of the problem and introduce

some basic notation.

Definition 3.1 The L-balanced r-centers problem is defined as follows:

Input: A complete weighted graph G' = (V, E), edge weights c(,,), integers L, x > 1.

Goal: Select an L-balanced center assignment (C, ¢), such that |C| = , minimizing the radius
R(S) of the induced assignment tuple S.

Let us denote the optimal radius by R,,.(G, L, k).

We assume that the edge weights satisfy the triangle inequality. If the graph does not obey

this assumption, we can modify it into such a complete graph by setting c(,) = distg(u, v)

for each edge (u,v). Without loss of generality, we label the edges so that ¢,, < ¢, < ... <

Ce and denote c¢; = c,; for all j > 1.

n(n—1)7
2

Following [HS86], for an integer ;1 > 1, we define the bottleneck graph, G, = (V, E,)
to be an edge subgraph of G, where E, = {e; € E | j < u}. We also define the t-closure
graph (G")!, for any edge subgraph G’ of G, as the unweighted graph in which two nodes are
connected iff there is a path of at most ¢ edges between them in the original graph G'.

3.1 The algorithm

We now give an approximation algorithm Select_Centers(G, L, k) to the problem, achieving
a constant approximation ratio. Let us start with an overview of the algorithm. The algo-

rithm considers the bottleneck graphs, GG, in increasing order of u. For each such graph,

Iz
it chooses a maximal independent set, C, in G%. As explained in [HS86] (sce Claim 3.2
below), this set C indicates whether there exists a feasible solution in G,. If there is no
feasible solution in G, the algorithm turns to the next bottleneck graph. Otherwise, it calls
procedure Allocate, whose task is to select the centers. After this procedure is applied to all
graphs G, the solution with the minimal radius (among all the solutions produced by the

algorithm) is taken as our final solution for the balanced k-center problem.

Procedure Allocate attempts to assign up to L—1 clients from V'\ C to each center, using
a flow computation. This process may leave some nodes of V' \ C' unassigned. Next, each of
these remaining nodes gets assigned, again using a flow computation, but this time ignoring
the balance constraints. The goal of the first flow phase is to ensure that the assignment
obtained by the two flow phases is “as balanced as possible”, in the sense that if a center
0 € C has fewer than L — 1 clients, while some nodes are left unassigned, there is no way to
improve the situation by moving clients to ¢, while still restricting ourselves to G,. We refer

to the assignment obtained after both flow phases as the initial assignment, denoted ;.

Next, Procedure Partition(C, ;) partitions the centers into two sets & and F, according
to the initial assignment ¢;. The set £ essentially consists of the light (or empty) centers,
i.e., those having fewer than L —1 clients (apart from themselves), and the set F contains the
heavy (or full) centers, i.e., those having more than L —1 clients. Actually, the more delicate
part of the procedure involves specifying the classification of those centers with precisely
L — 1 clients. Notice (see Figure 6) that £ consists of the set & of centers having at most
L —2 clients, plus all the centers that can potentially transfer clients to the ones in & (along
augmenting paths). We show (see Claim 3.4) that the first flow phase guarantees that &

contains no center, # with more than L — 1 clients, since otherwise we could transfer clients

If |V| > L - k then return “failure”.
For 1 =1 to |E| do
1. Choose a maximal independent set in GZ. Let this set be C'= {61,0s,...,6,}.

2. If / > k then go to Next.
3. Let G4,...,G,, be the connected components of GZ.
4. Let k; = [KL’W, for 1 <i<m.
5. If 3, k; > K then go to Next.
6. Let C; C C be the centers in connected component G;.
7. Fori=1,...,m:
Call (C%, ¢!,) Allocate(G;, L, C;).
8. Let ¢, be the union of the partial assignments ¢, and C\, = U, C},.

Next:
End-for
Select the assignment (C),, ¢,) with the minimal radius R(S), for 1 < pu < |E|.

Figure 4: Algorithm Select_Centers(G, L, k)

from @ to other centers in £ and increase the flow in G, (C), the flow graph with the load

constraint.

For the nodes being assigned to centers in £, this assignment is final. For the remaining
nodes the algorithm appoints a minimal number of additional centers (if |C'| < &, and the
load constraint is not satisfied). This is done by creating an auxiliary “neighborhood graph”
connecting the centers, constructing a spanning forest of the centers of F in this graph, and

applying a tree-contraction procedure, Tree_Contract, to each tree.

The main algorithm, Select_Centers(G, L, k), is presented in Figure 4. This algorithm
calls Procedure Allocate, presented in Figure 5. Procedure Allocate, in turn calls three
other procedures: Procedure Flow_graph (which was described in Figure 3), Procedure

Partition(C, ¢r) (given in Figure 6), and Procedure Tree_Contract(G) (given in Figure 7).

10.

11.

12.

13.

14.

15.

. Call G, <~ Flow_graph(C,V \ C,2¢,,L —1,1,1).

Compute the maximum integral flow fp, in the graph Gp,.

Define the partial assignment, ¢ as follows: 6; serves itself and those nodes v € V' \ C

that in the flow fx, receive flow from 0;.

Let V' be the set of nodes assigned to centers by ;.
Call Gp, <= Flow_graph(C,V \ (V' UC),2¢,,00,1,1).
Compute the maximum fp, flow in the graph Gp,.

Assign each node a center according to the flow fr,. Denote this assignment by ¢,

and let ¢; = 1 U @o.
Call (€, F) < Partition(C, py).
For every center § € C, let Bin(f) = S,, ().

Define G = (F, E), where
E = {(0,0") | 6,0 € F, Ju,v € V s.t. v € Bin(f) and u € Bin(#') and there is an
edge between u and v in G2 }.

Let Gy, ...G, be the connected components of G.

Call (C7, ¢}.) < Tree_Contract(G;) for every connected component.
Let o(v) = o (v) if p;(v) € &, and let p(v) = Ph(v) if ;(v) € FNG,.
Let Cp = E U, CY.

Output (Cr,).

Figure 5: Procedure Allocate(G, L, C)

10

—_

. Let & be the set of centers having at most L — 2 nodes assigned to them by ;.

2. Set

gj-i-l = ng{@EC | EUEV\C, 3¢ Egj,
dist(0,v) < 2-¢,, dist(0',v) <2-¢,, pi(v) =0},

3. Let £ be the largest set £; obtained in this process, and let F = C'\ £.

4. Return (€, F).

Figure 6: Procedure Partition(C, ¢;)

3.2 Correctness and analysis

In step 2 of the algorithm Select_Centers(G, L, k), we skip the current p, when the size
of the maximal independent set is greater than k. This action is justified by the following

claim.

Lemma 3.2 [HS86] If the maximal independent set, C', selected in step 1 of algorithm
Select_Centers(G, L, k) has size |C| > &, then there is no solution to the k-center problem

(even without the balance constraint) with radius < ¢,,.

Proof: Assume there is a solution (C’, ¢') to the unbalanced x center problem with radius
< ¢,. This means that the graph G, can be covered with & stars, where the stars are formed
around the centers of C” according to the assignment ¢’ in this solution. These k stars
turn into x cliques is Gi. At most one node from each clique can appear in any maximal
independent set. Therefore the size of any maximal independent set in Gi is at most k, but

C is an independent set in GZ with size greater than x ; a contradiction. |

Having an independent set of size x is sufficient for producing a feasible solution for
the k-center problem with no balance constraint. In the balanced problem, some addi-
tional constraints must be satisfied. These constraints appear in lines 3-5 in Algorithm
Select_Centers(G, L, k). Their necessity is justified by the next lemma:

Lemma 3.3 Let Gy,...,G,, be the connected components of G2, where G; = (V}, E}), and
Vil

let k; = [7]. If X k; > &, then there is no feasible solution for the balanced problem with

radius < ¢,,.

Proof: Assume that there exists a feasible solution (C’, ¢') for the balanced k-center problem

with radius b < ¢,. Then the graph G, can be covered with x stars, where each star has

11

1. Let C = {#1,...,0,,} be the nodes of G.
2. For every 1 < j <m, let Carry-in(f;) < 0
3. Construct a spanning tree in G.
4. Repeat
(a) Pick an arbitrary leaf 6 of the tree.
Let |Bin(0)| = iL + ¢, where 0 < e < L.

(b) Pick (i — 1) additional centers from the nodes in Bin(f),
and add them to C.

(c) Distribute i(L — 1) nodes among the i centers, assigning L nodes to each center

(including itself), and assigning first the nodes in Carry_in(6).
(d) Let Carry-out(6) be the set of € unassigned nodes of Bin(0).
(e) Let ¢ be the parent of € in the tree.

(f) Set Carry-in(0') < Carry-in(0") U Carry_-out(d),
and set Bin(0') < Bin(¢') U Carry_out(#).

(g) Remove 6 from the tree.
5. until the tree consists of a single node.

6. For the last remaining node 6, execute steps (a) to (d).
If |Carry_out()| > 0, pick an additional center from this set and assign all the other

members of Carry_out(f) to it.

7. Return the resulting assignment (C, @) for the nodes of Bin(f), 0 € G.

Figure 7: Procedure Tree_Contract(Q)

12

at most L nodes. Notice that G, and GZ induce the same partition of V' into connected
components, namely Vi, ..., V;,. A center can serve only nodes in its connected component.
Therefore, the connected component V; must have at least ; centers. Since (C',¢') is a

feasible solution, >>7*; k; < k. |

Let b be the radius of the optimal solution, let X,,, = {xy,... 2.} be the set of centers
chosen in an optimal solution, and let ¢, be an optimal assignment associated with these
centers. There exists an integer s, such that b = ¢,,, since G is a complete graph, and
the edge weights obey the triangle inequality. Let us analyze the solutions produced by our
algorithm for p = .

We first show that for G, 1 = pp, the initial assignment can be modified into feasible
assignment, even if the assignment of all the nodes in S,,(£) remains unchanged. The
definition of the set £& appears in Figure 6.

Claim 3.4 Each center in £ has at most L — 1 clients.

Proof: Assume that there exists a center # € £ with more than L — 1 clients assigned to it
by ¢r. Then there exists a j # 0, such that 6 belongs to £; but does not belong to any &;
for i < j. If this is the case then there exists a v € V' \ C and ' € £;_; such that v can be
transferred to #'. By asequence of such transfers & will be reached. Each center in & has
less than L — 1 clients, therefore this new client can be added without disobeying the load
constraint. The flow corresponding to this assignment is a legal flow in G, and is strictly

greater than the maximum flow in this graph, a contradiction. 1

Lemma 3.5 The partial solution (€, ¢; |5, (¢)) can be extended to a total feasible solution.

Proof: Let £ = {0y,...,0;}, and let

Xe={v e Xopt | popt(0) =z, 0 € E}.
The set X¢ is the set of “optimal centers” that in the optimal assignment serve the centers
in £. We proceed by proving the following claims.
Claim 3.6 ¢, (0) # popi(0') for every 6,0" € £.

Proof: In G, each € X¢ is the center of a star with radius < b whose leaves are the nodes
of S, () \ 2. In G2, each such star turns into a clique. The set £ is an independent set in

G2, therefore it contains at most one node from each set S, (z). 1

Corollary 3.7 |X¢| =1 1

13

Claim 3.8 S, (F) NSy, (Xe) = 0.

Proof: The proof is by contradiction. Suppose there exists some v € S, (F) N Sy, (Xe),
and let @, (v) =z, v € X¢. By the definition of Xg, there exists a center § € £, such that
opt(0) = x, therefore dist(v,8) < dist(6,x) + dist(z,v) < 2¢,. But p;(v) € F, therefore by
the definition of &, dist(6,v) > 2¢, for every 6 € £; a contradiction. 1

Therefore, S,,,,(Xe) €V \ Sy, (F) = Sy, (€). Every node served by X¢ in the optimal
assignment is served by a center in £ under the assignment ;. Therefore we can dedicate
the centers in £ to serve the set S,, (&), and the assignment PIls,,) can be extended to a
total feasible assignment (e.g. @op |s,,(#)). This completes the proof of Lemma 3.5. 11

We took care of the nodes assigned to centers in £. The centers in F might be overloaded,
so we have to appoint new centers. Let Bin(d) = S,(0) and let G = (F, F), where £ =
{(0,0) 10,0 € F, Ju,v € V s.t. v € Bin(f) and u € Bin(f') and there is an edge between
u and v in GZ} Next we show, that a feasible solution can be produced, even if we consider

each connected component éj of G separately. That is, letting

Bin(G U Bin(0

0ed,

there exists a feasible solution where the nodes of Bin(@j) are served only by nodes from
Bin(G,). This claim justifies line 12 of Procedure Allocate.

Claim 3.9 Let z be an optimal center such that z € Bm(é]) Then in the optimal assignment,

x does not serve nodes in Bm(), i F 7.

Proof: Since z € Bm(G), its distance from every u € Bin(G;), i # j, is at least b+ 1, but
the radius of the optimal solution is only b. If there existed a u € Bm(i), © # j such that
dist(u, x) in the graph G, is < b, then there would be an edge between u and x in the graph
G?, and then u € Bin(G}), a contradiction. TZIUR!!! I

Claim 3.10 Let z € X, be an optimal center, and let v € Bin(ém), such that Yopt (V) = .
Assume that ¢;(z) € €. Then there does not exist a v/, such that v’ € Bin(G;), i # m, and

Popt (V') = .
Proof: Assume that there exists such a v'. The center x serves v in an optimal assignment,
therefore dist(x,v) < b. Similarly dist(z,v') < b. But then, by the definition of G2, there

exists an edge between v and v, therefore ¢r(v) and r(v') must be in the same connected

component of G ; a contradiction. |

14

We have already set up a one-to-one correspondence between the centers in Xg and the

centers in €. No center in X¢ belongs to UBin(G;). The last two claims show that an

x € X \ Xg serves clients in at most one connected component Gi:

Claim 3.11 There exists a partition of X,,; \ X¢ into [subsets X!,..., X!, corresponding to
G1, ..., G, respectively, such that a center z € X7 does not serve nodes in Bm(éz) for i # 7.
|

Recall that each node of G corresponds to a center and its clients that are assigned to
it by ;. Two nodes in G are connected if they are “near”. We have already seen that
we can consider each connected component of G separately. In each component a spanning
tree is constructed. Since some of the centers are overloaded, we have to appoint additional
centers. We do this proceeding along the spanning tree from the leafs upwards. Assume that
there are iL + ¢, 0 < € < L nodes in Bin(f), that is iL + € nodes are assigned to 6 by ¢;.
One center, 6, was already appointed by ¢;. We arbitrarily choose ¢ — 1 new centers from
Bin(#) and assign each of them L — 1 clients. The number of nodes not taken care of at this
stage of the algorithm is €. Let 6’ be the parent of € in the spanning tree. The € nodes from
Bin(0') are added to the set Carry_in(#') (this set is initially empty), and Bin(') is set to
Bin(0') U Carry-in(#'). The leaf node, 6, is pruned. Once all the children of 6" are pruned,
we appoint additional centers in Bin(f') in the same manner as for 6, while making sure
that the nodes in Carry_in(6') get assigned to centers at this stage and are not forwarded to
the parent of ¢’ (see Lemma 3.13). This process is continued until there are no more nodes

in the tree.

During the execution of the tree contraction procedure, new centers are chosen. Let
be the set of the new centers, and let 7 = F UH. The set 7 can also be partitioned into [
subsets T%, ..., T, corresponding to Gi, ..., G, respectively, such that a 6 € T7 serves only

nodes in Bin(G}), since each connected component was treated separately.
Lemma 3.12 For every 1 < j <[, |T7] < |X7|.

centers to

Proof: The tree contraction procedure, Tree_Contract, assigns |T7| = ('BLL(G])‘]

serve Bin(G,). The centers in X7 are dedicated to Bin(G};), but they might serve additional

nodes, that in our solution are served by centers in €. Therefore, the centers in X7 must serve

at least |Bin(G})| clients. These centers obey the balance constraint, thus | X7| > [%ﬂ]

It remains to analyze the quality of the approximation. For the nodes in S, (£), we
assigned centers at distance < 2b. Now consider the nodes of S, (F). The final assignment

is always determined at the leaves of the tree. Let Bing,;(f) be the initial value of Bin(#),

15

and let Bingi,q () be the value of Bin(#) when it becomes a leaf of the current tree. Let
v € Binging (). Recall that

Bining(0) = Binini(0) U Carry_in(9).

If v € Carry-in(f), then v was moved to Binfinq(#) from a descendant of # in the original

spanning tree. In the assignment process, we first assign centers to the nodes in the set
Carry-in(0).

Lemma 3.13 All nodes in Carry_in(f) are assigned centers from Bin fi,q(0).

Proof: Let
|Carry_in(0)] = kL + e.
Then
|Binfina(0)] > (k+ 1)L + ¢,
since |Bing,i(0)] > L. Therefore we choose at least (k + 1) centers from the nodes of
Binfinal(ﬁ). I

. From this lemma it follows, that a node v is moved at most once during the tree contrac-
tion process. If p;(v) = 0, then ¢p(v) belongs either to Binfinw(f) or to Bininu ('), where
¢’ is the parent of ¢ in the spanning tree. In Bingiq(0’) there are nodes from Bing,: ('),

and possibly also nodes v such that ¢;(v) is 8", where 6" is a child of ',

Let pr(v) = ¢ and ¢;(v) = 0. There are several possibilities:

1. pp(v) € Bing,d. In this case:

dist(v,c) < dist(v,0) + dist(,c)
< 2b+2b=4b

since the radius of Bin;,;(6) is 2b.

2. pp(v) € Carry_in(f). This means that ¢ was initially assigned to one of the children
o of §. Recall that in the graph G two centers o and 6 are connected if there is a node
u € Bin(o) and a node v € Bin(f) such that there is an edge between u and v in GNZb
- that is dist(u,v) < 2b.

TZIUR!!

dist(v,c) < dist(c,0) + dist(o,u) + dist(u, w) +
dist(w,0) + dist(0,v) < 10b

16

;From the above we see that if o and # are neighbors in G then dist(, §) < 6b.

3. QOF(U) S Bmmzt(ﬂ')
TZIUR!M!

dist(v,c) < dist(v,0) + dist(0,0") + dist(¢', c)
< 100

4. pp(v) = cand ¢ € Carry_in(0') \ Bin,;(0) (that is in ¢, the node ¢ was assigned to

a center 0" that is a sibling of in the spanning tree).

TZIUR!!

dist(v,c) < dist(v,0)+ dist(,0") + dist(¢,cnt") +
dist(0",c) < 2b+ 6b+ 6b+ 2b = 16b

All the computations are polynomial in n. Therefore we have shown

Proposition 3.14 There exists a polynomial time approximation algorithm for the L-balanced
k-center problem with approximation ratio 16. |

3.3 Improvements

Further improvement in the approximation ratio can be achieved by modifying the algorithm,
and making a more careful choice of centers and sets C'arry_in during the tree contraction
phase, reducing the approximation ratio to 10. To achieve this, observe the following. First,
the clients of centers belonging to £ are at most at distance 2b from their centers. Secondly,

if v is assigned to a center c in its original bin, then dist(v,c) < 4b.

Let 0 be the parent of @ in the spanning tree. The nodes 6 and @ are connected in G.
Therefore there exists w(f) € Bin,(0) and v(0) € Bing,;(0'), such that dist(w,v) < 2b.
Thus

dist(w,0") < dist(w,v)+ dist(v,0")

< 20+2b=4b

We call the vertex w(f) special and the vertex v() nearset. If Carry_out(f) # 0 then we
include w(#) in Carry-out(0).

17

Let 61,05, ..., 60, be the children of € in the spanning tree. Assume that the sets Carry_out(6;)
are already defined, and now the algorithm takes care of the set Bininq (#). At this point
choose the vertices that will belong to Carry_out(f) (the size of the set is already known,
the set must include w(f) and all the other vertices must belong to Bin;,;(#)). Now, let us
look at the vertices v(6),...,v(6;). Notice that it is possible that v(6;) = v(f;), for i # j.
Let

package(v) = |J Carry_out(8;) U {v},
JEA(v)

where A(v) is the set of centers ; for which v is the nearest node of w(f;). Let
Ipackage(v)| = kL + €.

Notice that |Carry_out(f)| < L for any center #. Therefore if |package(v)| = kL + € then
are at least k distinct special nodes. Appoint any £ of the special nodes belonging to v as
centers and distribute kL nodes of package(v) between them. Let u be such a node, and ¢

such a center, where v € Carry_out(d;) and ¢ = w(#,,). Then

dist(u,c) < dist(u,b;) + dist(w, ;) + dist(w(8;),v) + dist(v, w(b,,))
< 2b+2b+2b+2b = 8b

The “leftovers” from the sets package(v) will be served by a subset of the nearest nodes.
In each set package(v) there is a distinct nearest node, v. There are less than L nodes of
package(v) that do not get served by special nodes. Let there be m “packages” that belong
to 6, then there are m special nodes and less than mL nodes that are “leftovers”. Therefore

all these nodes can be served by a subset of the special nodes. In this case:
dist(u, c) < dist(u,0;) + dist(0;, w(6;)) + dist(w(6;),v) + dist(v, §) + dist(6,v") < 100,
where v’ is a nearest node (not necessarily of u’s set).

The rest of the nodes belong to Bin;,;;(6) and are either in Carry_out(f) or get served
by centers belonging to Bin,;(0). Hence we get:

Proposition 3.15 There exists a polynomial time approximation algorithm for the L-balanced

k-center problem with approximation ratio 10. |

If kK = O(logn), then there exists a different approximation scheme achieving an ap-
proximation ratio of 4. The algorithm achieving this approximation ratio is depicted in

Figure 8.

As in the previous case, let us analyze the algorithm for the bottleneck graph G, asso-
ciated with ¢, = Rop(G, L, k). Let us denote this radius by b. Let X, = {z1,...,z4} be

18

For =1 to |E| do:

1. Choose a maximal independent set C' = {#y, ..., 0, } in G>.

2. If ky > k then skip to the next pu.

3. Cycle through all possible vectors § = (sq, ..., Sg,) such that Vi s; > 0, and 3 s; = k.
4. For each such vector s do:

Choose a set (" consisting of s; arbitrarily chosen points in every neighborhood I'g, (6;)
in G, /* notice |C'| =k */

If not successful then skip to next s

Call G < Flow_graph(C',V\ C",4-¢,,L —1,1,1)

Compute the maximum flow in Gg.
If the maximum flow is |V \ C’| then go to Success

5. End-for

End-for
Success: Run Assign(G,,C", L)

Figure 8: Algorithm Log_Centers(G, L, k)

19

an optimal solution. Let C' = {6, ..., 0, } be the set chosen in step 1 of our algorithm. For
each x;, there exists a 6}, such that 6; is a neighbor of x; in G (otherwise the set C'U {x;}
is an independent set and c is not maximal). An z; can be a neighbor of several 6,’s, but
let us arbitrarily associate one chosen 6; with each x;. Let s; denote the number of different
vertices x; that are associated with ; in this way. The vector 5 = {s},..., s} } satisfies
Vi s, > 0 and Y s, = &, and thus corresponds to one of the vectors considered by the al-
gorithm. In examining this vector, the algorithm placed s arbitrary centers, {v},...v%,}, in
0;’s neighborhood in Gy. Let xz;,, ..., i, be the optimal centers associated with 0;. Llet us
arbitrarily match the x;;’s with the Uj- in 0;’s neighborhood. Each such optimal center, z;,
. 3
therefore dist(z;;,v;) < 3b. Since X,y is an optimal solution to the problem with radius b,

is at distance at most 2b from 6;, and each new center, v%, is at most at distance b from 6;,

our solution has radius 4b.

As for the complexity of the algorithm, note that the outer loop is carried out polynomi-
ally many times in « and in n. There are (2:) ~ % possible s-vectors for each trial. Since

k = O(logn), this is polynomial in n, as are all the other steps of the algorithm.

Proposition 3.16 There exists a polynomial time approximation algorithm for the L-balanced
k-center problem with approximation ratio 4, under the additional assumption that k = O(logn).

4 The balanced weighted centers problem

In this section we consider the weighted version of the L-balanced r-centers problem. It is
assumed that every node v has a weight w(v), where w(v) is a positive real number, and we
look for a solution with minimal radius, in which the sum of the weights of the centers is at

most £ (notice that x is a real number now). For U C V| define w(U) = Y,y w(u).

Definition 4.1 The L-balanced, k-weighted centers problem is defined as follows:

Input: Graph G = (V, E) with weights w(v) on the nodes and c(,.) on the edges, an integer
L, and a real ¥ > 0.

Goal: Select an L-balanced center assignment (C,), such that w(C) < k, minimizing the
radius R(S) of the induced assignment tuple S.

Let us denote the optimal radius by Ryep (G, L, w, k).

As a basis for the approximation we shall make use of an initial solution for the unweighted

problem, that enjoys the minimum cardinality property defined below.

20

For =1 to |E| do

1.

2.

3.

4.

9.

10.

Choose a maximal independent set in GZ. Let this set be C'= {61,0s,...,6,}.

Call Procedure (CA’Z, ;) « Allocate(Gy, L, C;) for each connected component G; of GZ.

~

Let (C, ¢) = U(Cy, ;).

Construct G = (\7, U, E) as follows: let V = C = {61,...,0}, and let U=1V. Let
(0;,v) € E iff dist(0;,v) < 11c,. The weight of the edge (6;,v) is w(v).

. Compute a minimum weight perfect matching in G.

. If there is no perfect matching in the graph or the weight of the matching is greater

than k, then go to the next pu.

Otherwise let C" = {vy,...v,}, where 6; was matched to v; in the minimum weight

perfect matching.
Call Gp < Flow_graph(C',V,21-¢,, L —1,1,1).
Compute the maximum integral flow fr in Gp.

Assign each node a center according to the flow fg.

End-for

Return the assignment with the smallest radius.

Figure 9: Algorithm Weighted Centers(G, L, k)

Definition 4.2 Consider an instance of the L-balanced x-weighted centers problem. Let (C, ¢)

be a solution to the problem without the weight restriction. Then (C, ¢) is a minimum cardinality

solution for the problem if for every optimal solution (X, @op:) for the weighted problem, and
for every A C C, the subset of centers of X C X, serving the clients of A satisfies | X| > |A|.

The minimum cardinality solution (C, ¢) is said to have approximation ratio ¢ if its radius is
at most t - Ryopt(G, L, w, k).

The approximation algorithm Weighted_Centers(G, L, k) is given in Figure 9. The idea

is to start with applying Procedure Allocate and generate a minimum cardinality solution,

and then use Hall’s theorem to derive the ratio bound. When finding a solution for the

unweighted problem, there is no bound on the number of centers. The analysis is given by

the following lemmas.

21

Lemma 4.3 The call to Procedure Allocate in line 2 of algorithm Weighted_Centers(G, L, k)
returns a minimum cardinality solution (ignoring the node weight constraint) with approximation
ratio 10.

Proof: Let A C C, and partition A into two sets, 4e = ANE, and Ar = A \ Ag. Let
X C X, be the set of optimal centers for the weighted problem that serve the clients of
A. In order to prove that the solution provided by the procedure is a minimum cardinality
one, we shall have to show that |A] < |X|. Define X4, C X to be the set of optimal
centers serving Ags. Let X4, = X \ X4,. A proof along the lines of Claim 3.6 shows that
| Xa.| = |Ag|. It is easy to see that the clients of Ax are not served by X, using arguments

that appear in Claim 3.8. Next we claim:
Claim 4.4 | X4, | > |A#|.

Proof: The set F (together with its clients) is partitioned into connected components. Our
solution is such that in each connected component at most one center has fewer than L
clients. Let {€;y1,...,0;} be the centers in one of the connected components of F. Then
these centers serve at least (k — i)L + 1 clients, and therefore there are at least this many
optimal centers associated with them. An optimal center having clients in one connected

component of F cannot have clients from another component (see Claim 3.11). 1

Recall that X = X4, U X4,. We have shown that |X,,| = |A¢| and | X4, | > |Az|, and
Xa, N X4, =0, therefore | X| > |A|. This completes the proof of Lemma 4.3. 1

Procedure Allocate returns a solution with approximation ratio 10, therefore this minimal
cardinality solution (that does not necessarily obey the weight constraint) is such that its
radius is at most 10 times larger than the ratio of the optimal solution. It remains to be

seen how our solution meets the weight constraint.

Lemma 4.5 Algorithm Weighted_Centers(G, L, k) is a polynomial time algorithm for the L-
balanced k-weighted centers problem with approximation ratio 21.

Proof: In the bipartite graph, G, every center of the minimum cardinality solution is con-
nected to every vertex at distance at most 11b, where the weight of an edge is the weight
of the node the center is connected to. The algorithm looks for a minimum weight perfect

matching in G.

We need to argue that for the optimal b such a perfect matching exists, and moreover,
that w(C") < k. It suffices to show that there exist a perfect matching between V = C and a
subset of size m of X, where X is a subset of the centers in some optimal solution X to the
problem (i.e., a solution with radius Ry (G, L, w, £) and weight w(X) < k). If this is the

22

case, then the weight of the minimum weight perfect matching is at most the weight of the
optimal solution. By Hall’s theorem there exists such a perfect matching iff for every subset
M of V, the number of neighbors of M in X C U is at least the number of nodes in M.

Let M’ be the set of clients of M in the solution (C, ¢), and let X' be the set of centers
serving these clients in the optimal solution. Notice that dist(M, X') < 11b, since the
distance of # to its clients is at most 10b, and the distance of the client to its optimal center
is at most b. Therefore the set X' is a subset of the set of neighbors of M in the graph G.
Finally, by the definition of a minimum cardinality solution, |X'| > |M|. This proves the

existence of a perfect matching as desired.

Let {(01,v1), ..., (0m,vm)} be the selected minimum weight perfect matching. The cen-
ters of the L-balanced k-weighted centers problem will be C" = {vy, ..., v, }. We assign them
clients using Procedure Flow_graph, as described in Section 2. There exists an L-balanced
assignment with radius 21b, since v; is at most at distance 11b from 6;, and 6;’s clients are

at most at distance 10 from 6;. 1
To summarize:

Proposition 4.6 There exists a polynomial time approximation algorithm for the L-balanced,
k-weighted centers problem with approximation ratio 21. |

5 Algorithms for p-dominating sets

Let us now consider the dual problem, where given p, the maximal allowable distance of a
node from the set of centers to be chosen, and L, a bound on the number of clients assigned

to a center, we want to minimize the number of centers.

Definition 5.1 The L-balanced p-dominating set problem is defined as follows:
Input: Graph G(V, E), integers L,p > 1.
Goal: Select an L-balanced, p-dominating assignment (C, ¢), such that C' is of minimal size.

Recall that in the p-dominating set problem, a bound p is given on the maximal distance
between a node and its center and the aim of the algorithm is to minimize the number of
centers. We denote the optimal solution to this problem by C(G, L, p). We now give an

approximation algorithm with ratio [Inn].

In order to approximate the problem, we use an iterative algorithm that is greedy in the
following sense. We start with an empty set C. At each iteration we examine the possibility

of adding to C any vertex v not in C, such that C'U {v} can serve a maximum number

23

1. Call G(C, L) < Flow_graph(C,V \ C,p,L —1,1,1).
2. Compute the maximum integral flow function fg, in G,.

3. Set ¢(v) to be the center 0 such that fq, (0,v) > 0.
Set (@) = 6 for any center 6 € C.

Figure 10: Algorithm C'omp_Min for computing a minimal uniform function for C' and L.

clients (but possibly not all of them), when imposing the restriction that no server serves
more than L clients. Before stating the main algorithm we introduce the following auxiliary

definitions and lemimas.

An assignment is feasible if it meets the distance and load constraints. The assignment
we consider may be partial assignment, i.e., not every node of the graph is assigned a center.
Given a feasible (possibly partial) assignment ¢ into a set C, denote by U(y) the set of
unassigned clients, namely,

U(p) =V \ Dom(p),
where Dom(y) denotes the domain of ¢. For any feasible assignment ¢ define the ezcess of
© as
X(C,9) = [U(p)]-

In particular, for any complete feasible function ¢, X(C,) = 0. Let P denote the set of

feasible functions for given C' and L. Denote

X(C) =min{ X (C, ¢)}.

p€eP

Note that X (@) = |V|. We call an assignment function ¢ such that X(C) = X(C,¢), a
manimal function for C' and L. In Fig. 10 we describe procedure Comp_M1in that computes
a minimal function for a given set C' and integer L. (We allow a center to serve only L — 1

clients, since we always assume that a center serves itself.)

Fact 5.2 For a given graph G integers L and p and the set of centers C, let ¢’ be an arbitrary
feasible (possibly partial) assignment. Let F'(C') be the maximal flow obtained by procedure
Comp_Min. Then

1. X(C,¢) >|V| = F(O).

2. X(C) = V| - F(O).

24

1. C 0
2. While X(C) > 0 do

(a) Choose a vertex # € V' \ C such that X(C U {#}) is minimal, using Procedure
Comp_Min.

(b) C « C U {0}.

End-While

Figure 11: Algorithm Dominating_Set(G, L, p)

Proof: In computing F(C) we have augmented the flow as much as possible, considering
the constraint that a server does not serve more than L — 1 customers (plus itself). Assume

that part 1 does not hold, namely,
X(C,¢") < V| = F(CO).

Then, F(C) < |V|—X(C,¢'). Let us define a new flow function as follows. For every center
6 € C send a unit of flow to every node it serves in the assignment ¢’ (excluding itself). In
this flow function every node served by the centers receives a unit of flow, therefore the total
amount of flow obtained by this process is |V| — X (C,¢') and it exceeds the maximal flow
F(C). This leads to a contradiction. Part 2 of the claim follows directly from part 1. |

We now describe the main algorithm as follows. The algorithm operates sequentially in
a greedy fashion, adding at each iteration a new vertex 6 to the set of centers, in such a way

that it minimizes the new excess, X(C U {6}). The formal description is given in Figure 11.

5.1 Analysis

Clearly, when the process terminates, C' is a complete feasible function. (Note that such a

function always exists if L > 1 since every center may serve itself).

Let us denote by C; the set C' at the beginning of the 7’th iteration, where Cy = 0.
Consider the situation at the beginning of some iteration ¢, and let C' = C;. Let C* be
an optimal choice of centers for the given instance and let ¢* be a corresponding optimal

assignment. Denote
Iy =CnC*; To=(V\C)nC~.

25

For any feasible function ¢, denote by hit(p, ¢*) the number of vertices that were assigned

to the same center in C* and C', namely,
hit(p, ") = {v e V| p(v) = ¢*(v)}].
Let OPT denote the set of minimal assignments for C' and L,
OPT = {¢ | X(C,¢) = X(O)}.

Let ¢ be a function in OPT, for which hit(p, ¢*) is maximal (among the functions in OPT),
ie.,

hit(, ¢*) = max{hit(p, ¢*) | ¢ € OPT}.
Lemma 5.3 For any vertex v € U(¢), ¢*(v) € Tp.

Proof: Assume the contrary, namely, there is a vertex v € U(¢), such that
e (v)=0; 0Ty (1)

Clearly, |Ss(6)| = L, for otherwise we can assign v to #, reducing X (C'). Since v is assigned
to 6 in ¢*, and ¢* is feasible, there is a vertex w € S;(0) \ S,-(6). Let ¢' be an assignment
identical to ¢, except that ¢'(v) = ¢*(v), and ¢'(w) is undefined (namely, we take w out
of Sy (). Clearly, this assignment is feasible. Also note that v € U($) implies that
X(C,¢) = X(C,p) = X(C). Thus, ¢ € OPT. Note, however, that by the way ¢’
is defined, hit(¢',¢*) = hit(¢, ¢*) + 1, contradicting the assumption that ¢ maximizes
hit(p, ¢*) among the functions in OPT. 1

We now wish to show, that there is a vertex in T whose addition to C' reduces the excess
X(C) by a fraction of %

Lemma 5.4 There exists a vertex 8 € 15 such that

1S,-(0) NU(@)] +1 2 'f}fﬁ'.

Proof: Note that
Up)=ToU |J (Se-(0)nU(9)).

0cTo

Since Sy« (0) N Sy (0) = O for every 6 # ¢,

U@ = > (1S-(0) NU (@) +1).

0eTo

It follows from the pigeonhole principle, that at least one of the terms in the summation is

of size |U(¢)|/|To| or more, thus proving the desired claim. [

Let ¢ be the vertex whose existence is asserted by Lemma 5.4. Denote C' = C U {0'}.

26

Lemma 5.5 X(C') < X(C) —[S,-(¢')NnU(¢)| — 1.

Proof: Define ¢’ to be an assignment equivalent to ¢ except that if p*(v) = ¢ and v € U(p),
then set ¢'(v) = ¢'. Clearly, every vertex that is now in Sy, (6'), decreases X(C) by 1
(this follows from the fact that every such vertex was unassigned in ¢). Furthermore, the
feasibility of ¢* assures that the vertex 6" serves no more than L customers in ¢, and thus ¢
is feasible. Finally, note that 0 itself is extracted from U(¢'). Therefore X (C") < X(C',¢') <
X(C,¢) = [S,+(0")NU(¢)| — 1, and the desired claim follows. |

Lemma 5.5 enables us to estimate the progress made by the algorithm in each iteration

i, in terms of reducing the excess X (C;).
Lemma 5.6 X(Cj;1) < X(C)) - (1 — \c_1|) :

Proof: It follows from Lemmas 5.5 and 5.4 that, for 8’ and C" as defined above,

X(©) £ X(O)- 18,000 @)-1 < x()- T xe) (1 1) < 3o (1-).

The choice of C;1; now implies that

X(Cin) < X(C) £ X(G3) - (1 o |Cl*|> - 1

Corollary 5.7 X (C;) < X(Co) - (1- &) = V|- (1-&)"

Since the function (1 — %)m, x > 0 is an increasing function that converges to % as = tends
to 0o, we conclude that after k& = |C*| - [Inn] iterations, X (C;) < 1, and hence X (C;) = 0.
Since we add a single vertex to the set in each iteration we end up with at most |C*|[Inn]|

centers, therefore

Theorem 5.8 Algorithm Dominating_Set(G, L, p) is a [Inn]| approximation algorithm for the

p—dominating set problem. |

6 k-tolerant sets
Finally, we give an approximation algorithm with ratio k(logn + 1) for finding a k-tolerant
set of centers.

Definition 6.1 The k-tolerant center set problem is defined as follows:
Input: Given a graph G=(V,E), A, B C V, and an integer k > 1.

Goal: A minimal size k-tolerant center set C' .

27

Recall that we defined the k-tolerant sets problem as follows: Let A C V' be the set of
potential servers, and B C V the set of potential customers. A k-tolerant A-set for B (or
simply a k-tolerant set) is a subset C' C A, such that for every v € B, either v € C (this is
possible only if v € AN B) or there are k vertex-disjoint paths from v to C' (in particular,
to k distinct vertices in C'). A solution to the k-tolerant set problem is such a set C' C A of

minimal size.

Again, we can show that the associated decision problem problem is NP-complete (say,
by a reduction from SAT). We give an approximation algorithm with ratio klogn. This
algorithm generalizes the algorithm of [Lov75]. The result holds also for the interesting
subcase of the algorithm where A =B =V.

Given a set of centers C' and a vertex v, let f(v,C') denote the number of vertex-disjoint

paths from v to vertices of C' in GG. Using standard flow techniques, it is easy to see that:
Lemma 6.2 There is a polynomial time procedure F'(v,C') for computing f(v,C).

Proof: The procedure F(v,C') operates as follows. Let v be the source. Connect all the
vertices of C' to a sink vy, assign a capacity of 1 to all edges of G (plus the new edges to the
sink), and capacity 1 to all the nodes. On the resulting flow-graph, compute the maximum

flow from v to vs. This flow equals f(v,C). 1

Algorithm Tolerant_Centers(G, k) presented in Figure 12, computes a solution C. The
algorithm first checks whether there is a feasible solution to the problem, that is, for every
v € B\ A, there must exist k vertex disjoint paths from v to different nodes in A. This can
be tested using Procedure F'(v, A). If this condition holds, then C' = A is a feasible solution,

and we can try to minimize the number of centers.
For the analysis we need the following fact (for derivation see [Lov75]).

Fact 6.3 [Lov75] Let t;,a;, 1 < j < n be integers such that a; = Y,;;i - t; for every
1<j<n. Then

> ti:%‘i‘ > &

1<i<n 1<i<n—1 i(i+1)

|
Let 7 denote the size of the optimal set C, and let ¢t = |C] for the set C selected by the

algorithm.
Lemma 6.4 ¢t < 7k(logn + 1).

Proof:

28

For every v € B\ A compute f(v, A).
If Jv s.t. f(v, A) < k then return (‘No solution’)
Else
C 90
T+~ B
While T # () do:
For every v € A\ C
let G(v,T,C)={weT]| f(w,CU{v}) = f(w,C)+ 1}

and let
|G (v, T, C)|, if v ¢ B,

JTJC -
o) { |G(v,T,C)| + 1, otherwise.
Let vy be the vertex maximizing g(v, T, C).
C+Cu {Uo}
T« T\{w] f(w,C)=Fk}\{v}.
End-while

Figure 12: Algorithm Tolerant_Centers(G, k)

Consider the sequence of sets (1}, C;) generated during the iteration i of the algorithm,
and let v} = C;\C;_1, be the vertex added to C in iteration i. For each such pair (T; 1,C; 1),
let g; denote the number of paths added to vertices in T; ; by the choice of v} in iteration
i, ie gi = g(v}, T;_1,C;_1). Note that g; is a non-increasing sequence starting with n or less.
Let (7}, C;) (for i =n,...,1) denote the first pair (1}, C;), for which

g(Ug-'_l,]}7 C]) S ia

and let a; = |TZ| Let t;, for 1 < i < n, denote the number of steps of the algorithm between
Ti and Ti,l. Then

koa; > Y it for every 1 < j < n.
1<i<y

The inequality follows from the fact that & - a; is an upper bound on the number of times
we have to hit the set T] before the algorithm is over, while the sum on the other side of the
inequality is a lower bound on the number of hits the algorithm scores from this phase until
the end of the algorithm. Notice, that if a v € T is chosen as a center, it is removed from T’

without having to hit it £ times.

29

By Fact 6.3,

k- ay, k- a;
+

n L<igno 1+ 1)

t= Y <

1<i<n

(2)

Let 7; denote the size of the minimal set C; that solves the problem for the vertices of Tl
Then 7 > 7; > a;/i, since at most ¢ vertices can be removed from T by adding a single new
vertex to the set of centers. By (2) we get

k
t< Y 2L < kr(logn +1).
1<i<n

Proposition 6.5 There exists a polynomial time approximation algorithm for the k-tolerant set
problem with approximation ratio k(logn +1). 1

Acknowledgments

We would like to thank Madan Gopal and David Shmoys for helpful discussions.

30

References

[Ber85]

[BG8T]

[BG8Y]

[EveT9]

[GJT9]

[HR88]

[HS86]

[Lov75]

[MKS3]

[ML77]

[Pel90]

D. Bertsekas. A unified framework for primal-dual methods in minimum cost net-
work flow problems. Math. Prog., 32:125-145, 1985.

D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1987.

A. Bouloutas and P.M. Gopal. Some graph partitioning problems and algorithms re-
lated to routing in large computer networks. In Proc. 9th IEEE Conf. on Distributed
Computing Systems, pages 362-370, Newport Beach, CA, 1989.

S. Even. Graph Algorithms. Computer Science Press, 1979.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman and Company, 1979.

A.R. Hevner and A. Rao. Distributed data allocation strategies. In Advances in
Computers, Vol. 27, pages 121-155. Academic Press, 1988.

D.S Hochbaum and D. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33:533-550, 1986.

L. Lovész. On the ratio of optimal integral and fractional covers. Discrete Mathe-
matics, 13:383-390, 1975.

K. Murthy and J. Kam. An approximation algorithm to the file allocation problem
in computer networks. In Proc. 2nd ACM Symp. on Principles of Database Systems,
pages 258-266. ACM, 1983.

H.L. Morgan and K.D. Levin. Optimal program and data locations in computer
networks. Comm. of the ACM, 20:315-322, 1977.

D. Peleg. Distributed data structures: A complexity oriented view. In 4th Int.
Workshop on Distributed Algorithms, September 1990.

