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Clique, Dominating Set, and More

Parinya Chalermsook∗ Marek Cygan† Guy Kortsarz‡ Bundit Laekhanukit§

Pasin Manurangsi¶ Danupon Nanongkai‖ Luca Trevisan∗∗

August 15, 2017

Abstract

We consider questions that arise from the intersection between the areas of polynomial-time
approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algo-
rithms. The questions, which have been asked several times (e.g., [Mar08; FGMS12; DF13]), are
whether there is a non-trivial FPT-approximation algorithm for the Maximum Clique (Clique)
and Minimum Dominating Set (DomSet) problems parameterized by the size of the optimal
solution. In particular, letting OPT be the optimum and N be the size of the input, is there
an algorithm that runs in t(OPT) poly(N) time and outputs a solution of size f(OPT), for any
functions t and f that are independent of N (for Clique, we want f(OPT) = ω(1))?

In this paper, we show that both Clique and DomSet admit no non-trivial FPT-approximation
algorithm, i.e., there is no o(OPT)-FPT-approximation algorithm for Clique and no f(OPT)-
FPT-approximation algorithm for DomSet, for any function f (e.g., this holds even if f is an
exponential or the Ackermann function). In fact, our results imply something even stronger:
The best way to solve Clique and DomSet, even approximately, is to essentially enumerate all
possibilities. Our results hold under the Gap Exponential Time Hypothesis (Gap-ETH) [Din16;
MR16], which states that no 2o(n)-time algorithm can distinguish between a satisfiable 3SAT
formula and one which is not even (1 − ε)-satisfiable for some constant ε > 0.

Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for Maximum
Biclique, the problem of finding maximum subgraphs with hereditary properties (e.g., Maximum
Induced Planar Subgraph), and Maximum Induced Matching in bipartite graphs. Previously
only exact versions of these problems were known to be W[1]-hard [Lin15; KR00; MS09]. Addi-
tionally, we rule out ko(1)-FPT-approximation algorithm for Densest k-Subgraph although this
ratio does not yet match the trivial O(k)-approximation algorithm.

To the best of our knowledge, prior results only rule out constant factor approximation for
Clique [HKK13; BEKP15] and log1/4+ǫ(OPT) approximation for DomSet for any constant ǫ > 0
[CL16]. Our result on Clique significantly improves on [HKK13; BEKP15]. However, our result
on DomSet is incomparable to [CL16] since their results hold under ETH while our results hold
under Gap-ETH, which is a stronger assumption.
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1 Introduction

Fixed-parameter approximation algorithm (in short, FPT-approximation algorithm) is a new con-
cept emerging from a cross-fertilization between two trends in coping with NP-hard problems:
approximation algorithms and fixed-parameter tractable (FPT) algorithms. Roughly speaking, an
FPT-approximation algorithm is similar to an FPT algorithm in that its running time can be
of the form t(OPT) poly(N) time (called the FPT time), where t is any function (possibly super
exponentially growing), N is the input size, and OPT is the value of the optimal solution1. It
is similar to an approximation algorithm in that its output is an approximation of the optimal
solution; however, the approximation factor is analyzed in terms of the optimal solution (OPT)
and not the input size (N). Thus, an algorithm for a maximization (respectively, minimization)
problem is said to be f(OPT)-FPT-approximation for some function f if it outputs a solution of
size at least OPT/f(OPT) (respectively, at most OPT · f(OPT)). For a maximization problem,
such an algorithm is non-trivial when f(OPT) is o(OPT), while for a minimization problem, it is
non-trivial for any computable function f .

The notion of FPT-approximation is useful when we are interested in a small optimal solution,
and in particular its existence connects to a fundamental question whether there is a non-trivial
approximation algorithm when the optimal solution is small. Consider, for example, the Maximum
Clique (Clique) problem, where the goal is to find a clique (complete subgraph) with maximum
number of vertices in an n-vertex graph G. By outputting any single vertex, we get a trivial
polynomial-time n-approximation algorithm. The bound can be improved to O( n

logn) and even to

O(n(log logn)
2

log3 n
) with clever ideas [Fei04]. Observe, however, that these bounds are quite meaningless

when OPT = O(n(log logn)
2

log3 n
) since outputting a single vertex already guarantees such bounds. In this

case, a bound such as O( OPT

log logOPT
) would be more meaningful. Unfortunately, no approximation

ratio of the form o(OPT) is known even when FPT-time is allowed2 (Note that outputting a single
vertex gives an OPT-approximation guarantee.)

Similar questions can be asked for a minimization problem. Consider for instance, Minimum
Dominating Set (DomSet): Find the smallest set of vertices S such that every vertex in an n-vertex
input graph G has a neighbor in S. DomSet admits an O(log n)-approximation algorithm via a
basic greedy method. However, if we want the approximation ratio to depend on OPT and not n,
no f(OPT)-approximation ratio is known for any function f (not even 22

OPT

).
In fact, the existence of non-trivial FPT-approximation algorithms for Clique and DomSet has

been raised several times in the literature (e.g., [Mar08; FGMS12; DF13]). So far, the progress
towards these questions can only rule out O(1)-FPT-approximation algorithms for Clique. This
was shown independently by Hajiaghayi et al. [HKK13] and Bonnet et al. [BEKP15], assuming
the Exponential Time Hypothesis (ETH) and that a linear-size PCP exists. Alternatively, Khot
and Shinkar [KS16] proved this under a rather non-standard assumption that solving quadratic
equations over a finite field under a certain regime of parameters is not in FPT; unfortunately,
this assumption was later shown to be false [Kay14]. For DomSet, Chen and Li [CL16] could

1There are many ways to parameterize a problem. In this paper we focus on the standard parameterization which
parameterizes the optimal solution.

2In fact, for maximization problems, it can be shown that a problem admits an f(OPT)-FPT-approximation
algorithm for some function f = o(OPT) if and only if it admits a polynomial-time algorithm with approximation
ratio f ′(OPT) for some function f ′ = o(OPT) [GG07; Mar08] (also see [Mar13]). So, it does not matter whether the
running time is polynomial on the size of the input or depends on OPT.
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rule out O(1)-FPT-approximation algorithms assuming FPT 6= W[1]. Moreover, they improved
the inapproximability ratio to log1/4+ǫ(OPT) for any constant ǫ > 0 under the exponential time
hypothesis (ETH), which asserts that no subexponential time algorithms can decide whether a
given 3SAT formula is satisfiable. Remark that ETH implies that FPT 6= W[1].

Our Results and Techniques. We show that there is no non-trivial FPT-approximation algo-
rithm for both Clique and DomSet. That is, there is no o(OPT)-FPT-approximation algorithm for
Clique and no f(OPT)-FPT-approximation algorithm for DomSet, for any function f . Our results
hold under the Gap Exponential Time Hypothesis (Gap-ETH), which states that distinguishing be-
tween a satisfiable 3SAT formula and one which is not even (1− ǫ)-satisfiable requires exponential
time for some constant ǫ > 0 (see Section 2).

Gap-ETH, first formalized in [Din16; MR16], is a stronger version of the aforementioned ETH.
It has recently been shown to be useful in proving fine-grained hardness of approximation for
problems such as dense CSP with large alphabets [MR16] and Densest-k-Subgraph with perfect
completeness [Man17a].

Note that Gap-ETH is implied by ETH if we additionally assume that a linear-size PCP exists.
So, our result for Clique significantly improves the results in [HKK13; BLP16] under the same (in
fact, weaker) assumption. Our result for DomSet also significantly improves the results in [CL16],
but our assumption is stronger.

In fact, we can show even stronger results: the best way to solve Clique and DomSet, even
approximately, is to enumerate all possibilities in the following sense. Finding a clique of size r
can be trivially done in nr poly(n) time by checking whether any among all possible

(n
r

)
= O(nr)

sets of vertices forms a clique. It was known under ETH that this is essentially the best one can
do [CHKX06a; CHKX06b]. We show further that this running time is still needed, even when we
know that a clique of size much larger than r exists in the graph (e.g., OPT ≥ 22

r
), assuming

Gap-ETH. Similarly, for DomSet, we can always find a dominating set of size r in nr poly(n) time.
Under Gap-ETH, we show that there is no better way even when we just want to find a dominating
set of size q ≫ r.

We now give an overview of our techniques. The main challenge in showing our results is that
we want them to hold for the case where the optimal solution is arbitrarily smaller than the input
size. (This is important to get the FPT-inapproximability results.) To this end, (i) reductions
cannot blow up the optimal solution by a function of the input size, and (ii) our reductions must
start from problems with a large hardness gap, while having small OPT. Fortunately, Property (i)
holds for the known reductions we employ.

The challenge of (ii) is that existing gap amplifying techniques (e.g., the parallel repetition
theorem [Raz98] or the randomized graph product [BS92]), while amplifying the gap to arbitrarily
large, cause the input size to be too large that existing OPT reduction techniques (e.g., [CHKX06a;
PW10]) cannot be applied efficiently (in particular, in subexponential time). We circumvent this
by a step that amplifies the gap and reduce OPT at the same time. In more detail, this step takes
a 3SAT formula φ as an input and produces a “label cover”3 instance J (roughly, a bipartite graph
with constraints on edges) such that: For any c > 0, (i) If φ is satisfiable, then J is satisfiable,
and (ii) if φ is at most 0.99 satisfiable, then less than c-fraction of constraints of J can be satisfied.
Moreover, our reduction allows us to “compress” either the the left-hand-side or the right-hand-side
vertices to be arbitrarily small. This label cover instance is a starting point for all our problems.

3Our problem is an optimization problem on Label Cover instance, with a slightly different objective from the
standard Label Cover. Please refer to Section 4 for more detail.
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To derive our result for Clique, we would need the left-hand-side to be arbitrarily small, while for
DomSet, we would need the small right-hand-side.

The left-hand-side vertex compression is similar to the randomized graph product [BS92] and,
in fact, the reduction itself has been studied before [Zuc96b; Zuc96a] but in a very different regime
of parameters. For a more detailed discussion, please refer to Subsection 4.2.

Once the inapproximability results for label cover problems with small left-hand-side and right-
hand-side vertex set are established, we can simply reduce it to Clique and DomSet using the
standard reductions from [FGLSS96] and [Fei98] respectively.

Besides the above results for Clique and DomSet, we also show that no non-trivial FPT-
approximation algorithm exists for a few other problems, including Maximum Biclique, the problem
of finding maximum subgraphs with hereditary properties (e.g., maximum planar induced subgraph)
and Maximum Induced Matching in bipartite graphs. Previously only the exact versions of these
problems were only known to be W[1]-hard [Lin15; KR00; MS09]. Additionally, we rule out ko(1)-
FPT-approximation algorithm for Densest k-Subgraph, although this ratio does not yet match the
trivial O(k)-approximation algorithm. Finally, we remark that, while our result for maximum sub-
graphs with hereditary properties follows from a reduction from Clique, the FPT inapproximability
of other problems are shown not through the label cover problems, but instead from a modification
of the hardness of approximation of Densest k-Subgraph in [Man17a].

Previous Works. Our results are based on the method of compressing (or reducing the size of)
the optimal solution, which was first introduced by Chen, Huang, Kanj and Xia in [CHKX04] (the
journal version appears in [CHKX06a]). Assuming ETH, they showed that finding both Clique and
DomSet cannot be solved in time no(OPT), where n is the number of vertices in an input graph.
Later, Pătras,cu and Williams [PW10] applied similar techniques to sharpen the running time lower
bound of DomSet to n(1−ε)OPT, for any constant ε > 0, assuming the Strong Exponential Time
Hypothesis (SETH). The technique of compressing the optimal solution was also used in hardness
of approximation by Hajiaghayi, Khandekar and Kortsarz in [HKK13] and by Bonnet, Lampis and
Paschos in [BEKP15]. Our techniques can be seen as introducing gap amplification to the reductions
in [CHKX06a]. We emphasize that while [CHKX06a],[PW10],[HKK13] and [BEKP15] (and also
the reductions in this paper) are all based on the technique of compressing the optimal solution,
Hajiaghayi et al. [HKK13] compress the optimal solution after reducing SAT to the designated
problems, i.e., Clique and DomSet. [CHKX06a], [PW10], [BEKP15] and our reductions, on the
other hand, compress the optimal solution of SAT prior to feeding it to the standard reductions
(with small adjustment). While this difference does not affect the reduction for Clique, it has
a huge effect on DomSet. Specifically, compressing the optimal solution at the post-reduction
results in a huge blow-up because the blow-up in the first step (i.e., from SAT to DomSet) becomes
exponential after compressing the optimal solution. Our proof for Clique and the one in [HKK13]
bear a similarity in that both apply graph product to amplify approximation hardness. The key
different is that we use randomized graph product instead of the deterministic graph product used
in [HKK13].

Very recently, Chen and Lin [CL16] showed that DomSet admits no constant approximation
algorithm unless FPT = W[1]. Their hardness result was derived from the seminal result of Lin
[Lin15], which shows that theMaximum k-Intersection problem (a.k.a, One-side Gap-Biclique) has no
FPT approximation algorithm. Furthermore, they showed that, when assuming ETH, their result
can be strengthened to rule out log1/4+ǫ(OPT) FPT-approximation algorithm, for any constant
ǫ > 0. The result of Chen and Lin follows from the W[1]-hardness of Biclique [Lin15] and the proof
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of the ETH-hardness of Clique [CHKX04]. Note that while Chen and Lin did not discuss the size of
the optimal solution in their paper, the method of compressing the optimal solution was implicitly
used there. This is due to the running-time lower bound of Clique that they quoted from [CHKX04].

Our method for proving the FPT inapproximability of DomSet is similar to that in [PW10].
However, the original construction in [PW10] does not require a “partition system”. This is be-
cause Pătras,cu and Williams reduction starts from SAT, which can be casted as DomSet. In our
construction, the reduction starts from an instance of the Constraint Satisfaction problem (CSP)
that is more general than SAT (because of the gap-amplification step) and hence requires the con-
struction of a partition system. (Note that the partition system has been used in standard hardness
reductions for DomSet [LY94; Fei98].)

We remark that our proof does not imply FPT-inapproximability for DomSet under ETH
whereas Chen and Lin were able to prove the inapproximability result under ETH because their
reduction can be applied directly to SAT via the result in [CHKX06a]. If ones introduced the
Gap-ETH to the previous works, then the proofs in [CHKX06a; HKK13; BEKP15] yield the con-
stant FPT-inapproximability of Clique, and the proof in [CHKX06a] yields the constant FPT-
inapproximability of DomSet.

The summaries of previous works on Clique and DomSet are presented in Table 1.

Summary of Works on Clique

Inapprox Factor Running Time Lower Bound Assumption References

any constant t(OPT ) · no(OPT) ETH + LPCP [BEKP15]

OPT1−ǫ exp(OPTρ(ǫ)) ETH [CHK13]

1/(1 − ǫ) exp(exp(OPTρ(ǫ)))4 ETH [HKK13]

No ω(OPT) t(OPT ) · no(OPT) Gap-ETH This paper

Summary of Works on DomSet

Inapprox Factor Running Time Lower Bound Assumption References

OPT1−γ exp(OPT1−ρ(γ)) ETH [CHK13]
(logOPT)δ exp(exp((logOPT)δ−1)) ETH + PGC [HKK13]

any constant t(OPT ) · nO(1) (i.e. no FPT) W[1] 6= FPT [CL16]

(logOPT)1/4+ǫ t(OPT ) · no(
√
OPT) ETH [CL16]+[CHKX06a]

f(OPT) t(OPT ) · no(OPT) Gap-ETH This paper

Table 1: The summaries of works on Clique and DomSet. Here t denotes any computable function
t : N → N, ǫ denotes any constant 0 < ε < 1, γ denotes some constant 0 < ǫ < 1, ρ denotes
some non-decreasing function ρ : (0, 1) → (0, 1), δ denotes some constant δ > 1. PGC stands for
the Projection Game Conjecture [Mos15], and LPCP stands for the Linear-Size PCP Conjecture
[BEKP15].

Other Related Works. All problems considered in this work are also well-studied in terms
of hardness of approximation beyond the aforementioned parameterized regimes; indeed many
techniques used here are borrowed from or inspired by the non-parameterized settings.

4Constant FPT-inapproximability of Clique under ETH is claimed in [HKK13] (arXiv version). However, as we
investigated, the Gap-ETH is assumed there.
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Maximum Clique. Maximum Clique is arguably the first natural combinatorial optimization
problem studied in the context of hardness of approximation; in a seminal work of Feige, Goldwasser,
Lovász, Safra and Szegedy (henceforth FGLSS) [FGLSS96], a connection was made between inter-
active proofs and hardness of approximating Clique. This connection paves the way for later works
on Clique and other developments in the field of hardness of approximations; indeed, the FGLSS
reduction will serve as part of our proof as well. The FGLSS reduction, together with the PCP the-
orem [AS98; ALMSS98] and gap amplification via randomized graph products [BS92], immediately
implies nε ratio inapproximability of Clique for some constant ε > 0 under the assumption that NP⊆
BPP. Following Feige et al.’s work, there had been a long line of research on approximability of
Clique [BGLR93; FK00; BGS98; BS94], which culminated in H̊astad’s work [H̊as96]. In [H̊as96], it
was shown that Clique cannot be approximated to within a factor of n1−ε in polynomial time unless
NP⊆ ZPP; this was later derandomized by Zuckerman who showed a similar hardness under the
assumption NP* P [Zuc07]. Since then, better inapproximability ratios are known [EH00; Kho01;

KP06], with the best ratio being n/2(log n)
3/4+ε

for every ε > 0 (assuming NP* BPTIME(2(log n)
O(1)

))
due to Khot and Ponnuswami [KP06]. We note here that the best known polynomial time algorithm

for Clique achieves O
(
n(log logn)2

(logn)3

)
-approximation for the problem [Fei04].

Set Cover. Minimum Set Cover, which is equivalent to Minimum Dominating Set, is also
among the first problems studied in hardness of approximation. Lund and Yannakakis proved that,
unless NP⊆ DTIME(2(log n)

O(1)
), SetCov cannot be efficiently approximated to within c log n factor

of the optimum for some constant c > 0 [LY94]. Not long after, Feige [Fei98] both improved the
approximation ratio and weaken the assumption by showing an (1− ε) ln n-ratio inapproximability
for every ε > 0 assuming only that NP* DTIME(nO(log logn)). Recently, a similar inapproximability
has been achieved under the weaker NP* P assumption [Mos15; DS14]. Since a simple greedy algo-
rithm is known to yield (ln n+ 1)-approximation for SetCov [Chv79], the aforementioned hardness
result is essentially tight. A common feature in all previous works on hardness of SetCov [LY94;
Fei98; Mos15] is that the constructions involve composing certain variants of CSPs with partition
systems. As touched upon briefly earlier, our construction will also follow this approach; for the
exact definition of CSPs and the partition system used in our work, please refer to Subsection 5.2.2.

Maximum Subgraph with Hereditary Properties. The complexity of finding and approxi-
mating maximum subgraph with hereditary properties have also been studied since the 1980s [LY80;
LY93; FK05]; specifically, Feige and Kogan showed that, for every non-trivial property Π (i.e., Π
such that infinite many subgraphs satisfy Π and infinitely many subgraphs do not satisfy Π), the
problem is hard to approximate to within n1−ε factor for every ε > 0 unless NP⊆ ZPP [FK05].
We also note that non-trivial approximation algorithms for the problem are known; for instance,

when the property fails for some clique or some independent set, a polynomial time O
(
n(log logn)2

(log n)2

)
-

approximation algorithm is known [Hal00].
Maximum Balanced Biclique. While the Maximum Balanced Biclique problem bears a

strong resemblance to the Maximum Clique Problem, inapproximability of the latter cannot be
directly translated to that of the former; in fact, despite numerous attempts, not even constant
factor NP-hardness of approximation of the Maximum Balanced Biclique problem is known. For-
tunately, under stronger assumptions, hardness of approximation for the problem is known: nε-
factor hardness of approximation is known under Feige’s random 3SAT hypothesis [Fei02] or NP*⋂

ε>0BPTIME(2n
ε
) [Kho06], and n1−ε-factor hardness of approximation is known under strength-

ening of the Unique Games Conjecture [BGHKK16; Man17b]. To the best of our knowledge, no
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non-trivial approximation algorithm for the problem is known.
Densest k-Subgraph. The Densest k-Subgraph problem has received considerable attention

from the approximation algorithm community [KP93; FKP01; BCCFV10]; the best known polyno-
mial time algorithm due to Bhaskara et al. [BCCFV10] achieves O(n1/4+ε)-approximation for every
ε > 0. On the other hand, similar to Biclique, NP-hardness of approximating Densest k-Subgraph,
even to some constant ratio, has so far eluded researchers. Nevertheless, in the same works that
provide hardness results for Biclique [Fei02; Kho06], DkS is shown to be hard to approximate to
some constant factor under random 3-SAT hypothesis or NP*

⋂
ε>0BPTIME(2n

ε
). Furthermore,

2Ω(log2/3 n)-factor inapproximability is known under the planted clique hypothesis [AAMMW11]
and, under ETH (resp., Gap-ETH), n1/poly log logn (resp., no(1)) factor inapproximabilities are
known [Man17a]. (See also [BKRW17] in which a constant ratio ETH-hardness of approximat-
ing DkS was shown.) In addition to these hardness results, polynomial ratio integrality gaps for
strong LP and SDP relaxations of the problem are also known [BCVGZ12; Man15; CMMV17].

Maximum Induced Matching on Bipartite Graphs. The problem was proved to be
NP-hard independently by Stockmeyer and Vazirani [SV82] and Cameron [Cam89]. The approx-
imability of the problem was first studied by Duckworth et al. [DMZ05] who showed that the
problem is APX-hard, even on bipartite graphs of degree three. Elbassioni et al. [ERRS09] then
showed that the problem is hard to approximate to within n1/3−ε factor for every ε > 0, unless
NP⊆ ZPP. Chalermsook et al. [CLN13a] later improved the ratio to n1−ε for every ε > 0.

Organization. We define basic notations in Section 2. In Section 3, we define the notion of inher-
ently enumerative, which captures the fact that nothing better than enumerating all possibilities
can be done. We show that a problem admits no non-trivial FPT-approximation algorithm by
showing that it is inherently enumerative. In Section 4, we define and prove results about our
intermediate problems on label cover instances. Finally, in Section 5 we derive results for Clique,
DomSet, and other problems.

2 Preliminaries

We use standard terminology. For any graph G, we denote by V (G) and E(G) the vertex and edge
sets of G, respectively. For each vertex u ∈ V (G), we denote the set of its neighbors by NG(v); when
the graph G is clear from the context, we sometimes drop it from the notation. A clique of G is a
complete subgraph of G. Sometime we refer to a clique as a subset S ⊆ V (G) such that there is an
edge joining every pair of vertices in S. A biclique of G is a balanced complete bipartite subgraph
of G (i.e., the graph Kk,k). By k-biclique, we mean the graph Kk,k (i.e., the number of vertices
in each partition is k). An independent set of G is a subset of vertices S ⊆ V (G) such there is no
edge joining any pair of vertices in S. A dominating set of G is a subset of vertices S ⊆ V (G) such
that every vertex in G is either in S or has a neighbor in S. The clique number (resp., independent
number) of G is the size of the largest clique (resp., independent set) in G. The biclique number of
G is the largest integer k such that G contains Kk,k as a subgraph. The domination number of G
is defined similarly as the size of the smallest dominating set in G. The clique, independent and
domination numbers of G are usually denoted by ω(G), α(G) and γ(G), respectively. However,
in this paper, we will refer to these numbers by Clique(G),MIS(G),DomSet(G). Additionally, we
denote the biclique number of G by Biclique(G)
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2.1 FPT Approximation

Let us start by formalizing the the notation of optimization problems; here we follow the notation
due to Chen et al. [CGG06]. An optimization problem Π is defined by three components: (1) for
each input instance I of Π, a set of valid solutions of I denoted by SOLΠ(I), (2) for each instance
I of Π and each y ∈ SOLΠ(I), the cost of y with respect to I denoted by COSTΠ(I, y), and (3)
the goal of the problem GOALΠ ∈ {min,max} which specifies whether Π is a minimization or
maximization problem. Throughout this work, we will assume that COSTΠ(I, y) can be computed
in time |I|O(1). Finally, we denote by OPTΠ(I) the optimal value of each instance I, i.e. OPTΠ(I) =
GOALΠ COST(I, y) where y is taken over SOLΠ(I).

We now continue on to define parameterized approximation algorithms. While our discussion so
far has been on optimization problems, we will instead work with “gap versions” of these problems.
Roughly speaking, for a maximization problem Π, the gap version of Π takes in an additional input
k and the goal is to decide whether OPTΠ(I) ≥ k or OPTΠ(I) < k/f(k). As we will elaborate
below, the gap versions are weaker (i.e. easier) than the optimization versions and, hence, our
impossibility results for gap versions translate to those of optimization versions as well.

Definition 2.1 (FPT gap approximation). For any optimization problem Π and any computable
function f : N → [1,∞), an algorithm A, which takes as input an instance I of Π and a positive
integer k, is said to be an f -FPT gap approximation algorithm for Π if the following conditions
hold on every input (I, k):

• A runs in time t(k) · |I|O(1) for some computable function t : N → N.

• If GOALΠ = max, A must output 1 if OPTΠ(I) ≥ k and output 0 if OPTΠ(I) < k/f(k).

If GOALΠ = min, A must output 1 if OPTΠ(I) ≤ k and output 0 if OPTΠ(I) > k · f(k).

Π is said to be f -FPT gap approximable if there is an f -FPT gap approximation algorithm for Π.

Next, we formalize the concept of totally FPT inapproximable, which encapsulates the non-
existence of non-trivial FPT approximations discussed earlier in the introduction.

Definition 2.2. A minimization problem Π is said to be totally FPT inapproximable if, for every
computable function f : N → [1,∞), Π is not f -FPT gap approximable.

A maximization problem Π is said to be totally FPT inapproximable if, for every computable
function f : N → [1,∞) such that f(k) = o(k) (i.e. limk→∞ k/f(k) = ∞), Π is not f -FPT gap
approximable.

With the exception of Densest k-Subgraph, every problem considered in this work will be shown
to be totally FPT inapproximable. To this end, we remark that totally FPT inapproximable as
defined above through gap problems imply the non-existence of non-trivial FPT approximation
algorithm that was discussed in the introduction. These implications are stated more precisely in
the two propositions below; their proofs are given in Appendix A.

Proposition 2.3. Let Π be any minimization problem. Then, (1) implies (2) where (1) and (2)
are as defined below.

(1) Π is totally FPT inapproximable.
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(2) For all computable functions t : N → N and f : N → [1,∞), there is no algorithm that, on
every instance I of Π, runs in time t(OPTΠ(I)) · |I|O(1) and outputs a solution y ∈ SOLΠ(I)
such that COSTΠ(I, y) ≤ OPTΠ(I) · f(OPTΠ(I)).

Proposition 2.4. Let Π be any maximization problem. Then, (1) implies (2) where (1) and (2)
are as defined below.

(1) Π is totally FPT inapproximable.

(2) For all computable functions t : N → N and f : N → [1,∞) such that f(k) = o(k) and
k/f(k) is non-decreasing, there is no algorithm that, on every instance I of Π, runs in
time t(OPTΠ(I)) · |I|O(1) and outputs a solution y ∈ SOLΠ(I) such that COSTΠ(I, y) ≥
OPTΠ(I)/f(OPTΠ(I)).

2.2 List of Problems

We will now list the problems studied in this work. While all the problems here can be defined
in terms of optimization problems as defined the previous subsection, we will omit the terms
SOL,COST and GOAL whenever they are clear from the context.

The Maximum Clique Problem (Clique). In k-Clique, we are given a graph G together with
an integer k, and the goal is to decide whether G has a clique of size k. The maximization version
of Clique, called Max-Clique, asks to compute the maximum size of a clique in G. We will abuse
Clique to mean the Max-Clique problem, and we will denote by Clique(G) the clique number of G,
which is the value of the optimal solution to Clique.

The problem that is (computationally) equivalent to Clique is the maximum independent set
problem (MIS) which asks to compute the size of the maximum independent set in G. The two
problems are equivalent since any clique in G is an independent set in the complement graph Ḡ.

The Minimum Dominating Set Problem (DomSet). In k-DomSet, we are given a graph G
together with an integer k, and the goal is to decide whether G has a dominating set of size k.
The minimization version of k-DomSet is called the DomSet, which asks to compute the size of the
minimum dominating set in G.

The problem that is equivalent to DomSet is the minimum set cover problem (SetCov): Given
a universe U of n elements and a collection S of m subsets S1, . . . , Sm ⊆ U , the goal is to find
the minimum number of subsets of S whose union equals U . It is a standard fact that DomSet is
equivalent to SetCov. See Appendix D for more detail.

Maximum Induced Subgraph with Hereditary Properties: A property Π is simply a subset
of all graphs. We say that Π is a hereditary property if whenever G ∈ Π, all induced subgraphs
of G are in Π. The Maximum Induced Subgraph problem with Property Π asks for a maximum
cardinality set S ⊆ V (G) such that G[S] ∈ Π. Here G[S] denotes the subgraph of G induced on S.
Notice that both Clique and MIS belong to this class of problems. For more discussions on problems
that belong to this class, see Appendix D.

Maximum Induced Matching on Bipartite Graphs: An induced matching M of a graph
G = (V,E) is a subset of edges {(u1, v1), . . . , (u|M|, v|M|)} such that there is no cross edge, i.e.,
(ui, uj), (vi, vj), (ui, vj) /∈ E for all i 6= j. The induced matching number IM(G) of graph G is
simply the maximum value of |M| among all induced matchings M’s of G. In this work, we will be
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interested in the problem of approximating IM(G) in bipartite graphs; this is because, for general
graphs, the problem is as hard to approximate as Clique. (See Appendix D for more details.)

Maximum Balanced Biclique (Biclique). In k-Biclique, we are given a bipartite graph G together
with an integer k. The goal is to decide whether G contains a complete bipartite subgraph (biclique)
with k vertices on each side. In other words, we are asked to decide whether G contains Kk,k as
a subgraph. The maximization version of Biclique, called Maximum Balanced Biclique, asks to
compute the maximum size of a balanced biclique in G.

Densest k-Subgraph (DkS). In the Densest k-Subgraph problem, we are given an integer k and a
graph G = (V,E). The goal is to find a subset S ⊆ V of k vertices that induces maximum number
of edges. For convenience, we define density of an induced subgraph G[S] to be Den(G[S]) ,
E(G[S])

(|S|
2 )

∈ [0, 1] and we define the optimal density of DkS to be Denk(G) = maxS⊆V,|S|=kDen(S).

2.3 Gap Exponential Time Hypothesis

Our results are based on the Gap Exponential Time Hypothesis (Gap-ETH). Before we state the
hypothesis, let us recall the definition of 3-SAT. In q-SAT, we are given a CNF formula φ in which
each clause consists of at most q literals, and the goal is to decide whether φ is satisfiable.

Max q-SAT is a maximization version of q-SAT which asks to compute the maximum number of
clauses in φ that can be simultaneously satisfied. We will abuse q-SAT to mean Max q-SAT, and for
a formula φ, we use SAT(φ) to denote the maximum number of clauses satisfied by any assignment.

The Gap Exponential Time Hypothesis can now be stated in terms of SAT as follows.

Conjecture 2.5 ((randomized) Gap Exponential-Time Hypothesis (Gap-ETH) [Din16; MR16]).
For some constant δ, ǫ > 0, no algorithm can, given a 3-SAT formula φ on n variables and m = O(n)
clauses, distinguishes between the following cases correctly with probability ≥ 2/3 in O(2δn) time:

• SAT(φ) = m and

• SAT(φ) < (1− ǫ)m.

Note that the case where ǫ = 1/m (that is, the algorithm only needs to distinguish between the
cases that SAT(φ) = m and SAT(φ) < m) is known as ETH [IPZ01]. Another related conjecture is
the strengthened version of ETH is called the Strong Exponential-Time Hypothesis (SETH) [IP01]:
for any ǫ > 0, there is an integer k ≥ 3 such that there is no 2(1−ǫ)n-time algorithm for k-SAT.
Gap-ETH of course implies ETH, but, to the best of our knowledge, no formal relationship is known
between Gap-ETH and SETH. While Gap-ETH may seem strong due to the gap between the two
cases, there are evidences suggesting that it may indeed be true, or, at the very least, refuting it is
beyond the reach of our current techniques. We discuss some of these evidences in Appendix F.

While Gap-ETH as stated above rules out not only deterministic but also randomized algo-
rithms, the deterministic version of Gap-ETH suffices for some of our results, including inapprox-
imability of Clique and DomSet. The reduction for DomSet as stated below will already be deter-
ministic, but the reduction for Clique will be randomized. However, it can be easily derandomized
and we sketch the idea behind this in in Subsection 4.2.1. Note that, on the other hand, we do not
know how to derandomize some of our other results, including those of Biclique and DkS.

9



3 FPT Inapproximability via Inherently Enumerative Concept

Throughout the paper, we will prove FPT inapproximability through the concept of inherently
enumerative problems, which will be formalized shortly.

To motivate the concept, note that all problems Π considered in this paper admit an exact
algorithm that runs in time5 O⋆(|I|OPTΠ(I)); For instance, to find a clique of size k in G, one can

enumerate all
(|V (G)|

k

)
= |V (G)|O(k) possibilities6. For many W[1]-hard problems (e.g. Clique), this

running time is nearly the best possible assuming ETH: Any algorithm that finds a k-clique in time
|V (G)|o(k) would break ETH. In the light of such result, it is natural to ask the following question.

Assume that Clique(G) ≥ 22
k
, can we find a clique of size k in time |V (G)|o(k)?

In other words, can we exploit a prior knowledge that there is a clique of size much larger than
k to help us find a k-clique faster? Roughly speaking, we will show later that, assuming Gap-ETH,
the answer of this question is also negative, even when 22

k
is replaced by any constant independent

of k. This is encapsulated in the inherently enumerative concept as defined below.

Definition 3.1 (Inherently Enumerative). A problem Π is said to be inherently enumerative if
there exist constants δ, r0 > 0 such that, for any integers q ≥ r ≥ r0, no algorithm can decide, on
every input instance I of Π, whether (i) OPTΠ(I) < r or (ii) OPTΠ(I) ≥ q in time7 Oq,r(|I|δr).

While we will show that Clique and DomSet are inherently enumerative, we cannot do the same
for some other problems, such as Biclique. Even for the exact version of Biclique, the best running

time lower bound known is only |V (G)|Ω(
√
k) [Lin15] assuming ETH. In order to succinctly categorize

such lower bounds, we define a similar but weaker notation of weakly inherently enumerative:

Definition 3.2 (Weakly Inherently Enumerative). For any function β = ω(1) (i.e. limr→∞ β(r) =
∞), a problem Π is said to be β-weakly inherently enumerative if there exists a constant r0 > 0
such that, for any integers q ≥ r ≥ r0, no algorithm can decide, on every input instance I of Π,
whether (i) OPTΠ(I) < r or (ii) OPTΠ(I) ≥ q in time Oq,r(|I|β(r)).

Π is said to be weakly inherently enumerative if it is β-weakly inherently enumerative for some
β = ω(1).

It follows from the definitions that any inherently enumerative problem is also weakly inherently
enumerative. As stated earlier, we will prove total FPT inapproximability through inherently
enumerative; the proposition below formally establishes a connection between the two.

Proposition 3.3. If Π is weakly inherently enumerative, then Π is totally FPT inapproximable.

Proof. We first consider maximization problems. We will prove the contrapositive of the statement.
Assume that a maximization problem Π is not totally FPT inapproximable, i.e., Π admits an f -FPT
gap approximation algorithm A for some computable function f such that limk→∞ k/f(k) = ∞.
Suppose that the running time of A on every input (I, k) is t(k) · |I|D for some constant D and
some function t. We will show that Π is not weakly inherently enumerative.

5Recall that O⋆(·) hides terms that are polynomial in the input size.
6A faster algorithm runs in time |V (G)|ωk/3 can be done by a reduction to matrix multiplication.
7Oq,r(·) here and in Definition 3.2 hides any multiplicative term that is a function of q and r.
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Let r0 > 0 be any constant and let β : N → R+ be any function such that β = ω(1). Let r
be the smallest integer such that r > r0 and β(r) ≥ D and let q be the smallest integer such that
q/f(q) > r. Note that r and q exists since limr→∞ β(r) = ∞ and limq→∞ q/f(q) = ∞.

Given any instance I of Π. From the definition of f -FPT gap approximation algorithms (Def-
inition 2.1) and from the fact that q/f(q) > r, A on the input (I, q) can distinguish between
OPTΠ(I) ≥ q and OPTΠ(I) < r in t(q) · |I|D ≤ t(q) · |I|β(r) = Oq,r(|I|β(r)) time. Hence, Π is not
weakly inherently enumerative, concluding our proof for maximization problems.

For any minimization problem Π, assume again that Π is not totally FPT inapproximable, i.e.,
Π admits an f -FPT gap approximation algorithm A for some computable function f . Suppose that
the running time of A on every input (I, k) is t(k) · |I|D for some constant D.

Let r0 > 0 be any constant and let β : N → R+ be any function such that β = ω(1). Let r be
the smallest integer such that r > r0 and β(r) ≥ D and let q = ⌈r · f(r)⌉.

Given any instance I of Π. From definition of f -FPT gap approximation algorithms and from
q ≥ r · f(r), A on the input (I, r) can distinguish between OPTΠ(I) ≥ q and OPTΠ(I) < r in
t(r) · |I|D ≤ t(r) · |I|β(r) = Oq,r(|I|β(r)) time. Hence, Π is not weakly inherently enumerative.

An important tool in almost any branch of complexity theory, including parameterized complex-
ity, is a notion of reductions. For the purpose of facilitating proofs of totally FPT inapproximability,
we define the following reduction, which we call FPT gap reductions.

Definition 3.4 (FPT gap reduction). For any functions f, g = ω(1), a problem Π0 is said to be
(f, g)-FPT gap reducible to a problem Π1 if there exists an algorithm A which takes in an instance
I0 of Π0 and integers q, r and produce an instance I1 of Π1 such that the following conditions hold.

• A runs in time t(q, r) · |I0|O(1) for some computable function t : N× N → N.

• For every positive integer q, if OPTΠ0(I0) ≥ q, then OPTΠ1(I1) ≥ f(q).

• For every positive integer r, if OPTΠ0(I0) < g(r), then OPTΠ1(I1) < r.

It is not hard to see that FPT gap reduction indeed preserves totally FPT inapproximability,
as formalized in Proposition 3.5 below. The proof of the proposition can be found in Appendix B.

Proposition 3.5. If a problem Π0 is (i) (f, g)-FPT gap reducible to Π1 for some computable non-
decreasing functions f, g = ω(1), and (ii) totally FPT inapproximable, then Π1 is also totally FPT
inapproximable.

As stated earlier, we mainly work with inherently enumerative concepts instead of working
directly with totally FPT inapproximability; indeed, we will never use the above proposition and
we alternatively use FPT gap reductions to prove that problems are weakly inherently enumeratives.
For this purpose, we will need the following proposition.

Proposition 3.6. If a problem Π0 is (i) (f, g)-FPT gap reducible to Π1 and (ii) β-weakly inherently
enumerative for some f, g, β = ω(1), then Π1 is Ω(β ◦ g)-weakly inherently enumerative.

Proof. We assume that (i) holds, and will show that if the “then” part does not hold, then (ii) also
does not hold. Recall from Definition 3.4 that (i) implies that there exists C,D > 0 such that the
reduction from Π0 (with parameters q and r) to Π1 takes Oq,r(|I0|C) time and always output an
instance I1 of size at most Oq,r(|I0|D) on every input instance I0. Now assume that the “then”
part does not hold, in particular Π1 is not (β ◦ g)/D-weakly inherently enumerative. We will show
the following claim which says that (ii) does not hold (by Definition 3.2).
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Claim 3.7. For every r0 > 0, there exists q ≥ r ≥ r0 and an Oq,r(|I0|β(r))-time algorithm B that
can, on every input instance I0 of Π0, distinguish between OPTΠ0(I0) ≥ q and OPTΠ0(I0) < r.

We now prove the claim. Consider any r0. Since β, g = ω(1), there exists r′0 such that g(r′) ≥ r0
and β(r′) ≥ C, for all r′ ≥ r′0. From the assumption that Π1 is not (β ◦ g)/D-weakly inherently
enumerative, there exist q′ ≥ r′ ≥ r′0 such that there is an Oq′,r′(|I1|β(g(r

′))/D)-time algorithm A that
can, on every input instance I1 of Π1, distinguish between OPTΠ1(I1) ≥ q′ and OPTΠ1(I1) < r′.

Let r = g(r′), and let q be the smallest integer such that f(q) ≥ q′ and q ≥ r; Note that q exists
since limq→∞ f(q) = ∞, and that r ≥ r0. We use A and the reduction to build an algorithm B
as follows. On input I0, algorithm B runs the reduction on I0 and the previously defined q, r. Let
us call the output of the reduction I1. B then runs A on input (I1, q

′, r′) and outputs accordingly;
i.e. if A says that OPTΠ1(I1) ≥ q′, then B outputs OPTΠ0(I0) ≥ q, and, otherwise, if A says that
OPTΠ1(I1) < r′, then B outputs OPTΠ0(I0) < r.

Now we show that B can distinguish whether OPTΠ0(I0) ≥ q or OPTΠ1(I1) < r as desired by
the claim: From our choice of q, if OPTΠ0(I0) ≥ q, then OPTΠ1(I1) ≥ f(q) ≥ q′. Similarly, from
our choice of r = g(r′), if OPTΠ0(I0) < r, then OPTΠ1(I1) < r′. Since A can distinguish between
the two cases, B can distinguish between the two cases as well.

The total running time of B is Oq,r(|I0|C) + Oq′,r′(|I1|β(g(r
′))/D) (the first term is for running

the reduction). Since I1 of size at most Oq,r(|I0|D), β(r) ≥ C, and q′ and r′ depend only on q and
r, the running time can be bounded by Oq,r(|I0|β(r)) as desired.

4 Covering Problems on Label Cover Instances

In this section, we give intermediate results for the lower bounds on the running time of approxi-
mating variants of the label cover problem, which will be the source of our inapproximability results
for Clique and DomSet.

4.1 Problems and Results

Label cover instance: A label cover instance Γ consists of (G,ΣU ,ΣV ,Π), where

• G = (U, V,E) is a bipartite graph between vertex sets U and V and an edge set E,

• ΣU and ΣV are sets of alphabets to be assigned to vertices in U and V , respectively, and

• Π = {Πe}e∈E is a set of constraints Πe ⊆ ΣU × ΣV .

We say that Π (or Γ) has the projection property if for every edge uv ∈ E (where u ∈ U and
V ∈ v) and every α ∈ ΣU , there is exactly one β ∈ ΣV such that (α, β) ∈ Πuv.

We will define two combinatorial optimization problems on an instance of the label cover prob-
lem. These two problems are defined on the same instance as the standard label cover problem.
We will briefly discuss how our problems differ from the standard one.

Max-Cover Problem: A labeling of the graph, is a pair of mappings σU : U → ΣU and σV :
V → ΣV . We say that a labeling (σU , σV ) covers edge uv if (σU (u), σV (v)) ∈ Πuv. We say that a
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labeling covers a vertex u if it covers every edge incident to u. For any label cover instance Γ, let
MaxCov(Γ) denote the maximum number of vertices in U that can be covered by a labeling; i.e.

MaxCov(Γ) := max
σU :U→ΣU , σV :V→ΣV

|{u ∈ U | (σU , σV ) covers u}|.

The goal of the Max-Cover problem is to compute MaxCov(Γ). We remark that the standard
label cover problem (e.g. [WS11]) would try to maximize the number of covered edges, as opposed
to our Max-Cover problem, which seeks to maximize the number of covered vertices.

Min-Label Problem: A multi-labeling of the graph, is a pair of mappings σU : U → ΣU and
σ̂V : V → 2ΣV . We say that (σU , σ̂V ) covers an edge uv, if there exists β ∈ σ̂V (v) such that
(σ(u), β) ∈ Πuv. For any label cover instance Γ, let MinLab(Γ) denote the minimum number of
labels needed to assign to vertices in V in order to cover all vertices in U ; i.e.

MinLab(Γ) := min
(σU ,σ̂V )

∑

v∈V
|σ̂V (v)|

where the minimization is over multi-labelings (σU , σ̂V ) that covers every edge in G.
We emphasize that we can assign multiple labels to nodes in V while each node in U must be

assigned a unique label. Note that MinLab is different from the problem known in the literature as
MinRep (e.g. [CHK11]); in particular, in MinRep we can assign multiple labels to all nodes.

Results. First, note that checking whether MaxCov(Γ) < r or not, for any r ≥ 1, can be done by
the following algorithms.

1. It can be done8 in O⋆(
(|U |

r

)
(|ΣU |)r) = O⋆((|U |·|ΣU |)r) time: First, enumerate all

(|U |
r

)
possible

subsets U ′ of U and all |ΣU ||U
′| possible labelings on vertices in U ′. Once we fix the labeling

on U ′, we only need polynomial time to check whether we can label other vertices so that all
vertices in U ′ are covered.

2. It can be done in O⋆(|ΣV ||V |) time: Enumerate all O⋆(|ΣV ||V |) possible labelings σV on V .
After σV is fixed, we can find labeling σU on U that maximizes the number of vertices covered
in U in polynomial time.

ETH can be restated as that these algorithms are the best possible when |U | = Θ(|V |),
|ΣU |, |ΣV | = O(1) and Π has the projection property. Gap-ETH asserts further that this is the
case even to distinguish between MaxCov(Γ) = |U | and MaxCov(Γ) ≤ (1− ε)|U |.

Theorem 4.1. Gap-ETH (Conjecture 2.5) is equivalent to the following statement. There exist
constants ε, δ > 0 such that no algorithm can take a label cover instance Γ and can distinguish
between the following cases in O(2δ|U |) time:

• MaxCov(Γ) = |U |, and

• MaxCov(Γ) < (1− ε)|U |.

This holds even when |ΣU |, |ΣV | = O(1), |U | = Θ(|V |) and Π has the projection property.

8Recall that we use O⋆(·) to hide factors polynomial in the input size.
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The proof of Theorem 4.1 is standard. To avoid distracting the readers, we provide the sketch
of the proof in Appendix E.

We will show that Theorem 4.1 can be extended to several cases, which will be useful later.
First, consider when the first (O⋆((|U | · |ΣU |)r)-time) algorithm is faster than the second. We show
that in this case this algorithm is essentially the best even for r = O(1), and this holds even when
we know that MaxCov(Γ) = |U |.

For convenience, in the statements of Theorems 4.2 to 4.4 below, we will use the notation |Γ| to
denote the size of the label cover instance; in particular, |Γ| = |ΣU ||ΣV ||U ||V |. Furthermore, recall
that the notation Ok,r(·) denotes any multiplicative factor that depends only on k and r.

Theorem 4.2 (MaxCov with Small |U |). Assuming Gap-ETH, there exist constants δ, ρ > 0 such
that, for any positive integers k ≥ r ≥ ρ, no algorithm can take a label cover instance Γ with |U | = k
and distinguish between the following cases in Ok,r(|Γ|δr) time:

• MaxCov(Γ) = k and

• MaxCov(Γ) < r.

This holds even when |ΣV | = O(1) and Π has the projection property.

We emphasize that it is important for applications in later sections that r = O(1). In fact,
the main challenge in proving the theorem above is to prove it true for r that is arbitrarily small
compared to |U |.

Secondly, consider when the second (O⋆(|ΣV ||V |)-time) algorithm is faster; in particular when
|V | ≪ |U |. In this case, we cannot make the soundness (i.e. parameter r in Theorem 4.2) to be
arbitrarily small. (Roughly speaking, the first algorithm can become faster otherwise.) Instead, we
will show that the second algorithm is essentially the best possible for soundness as small as γ|U |,
for any constant γ > 0. More importantly, this holds for |V | = O(1) (thus independent from the
input size). This is the key property of this theorem that we need later.

Theorem 4.3 (MaxCov with Small |V |). Assuming Gap-ETH, there exist constants δ, ρ > 0 such
that, for any positive integer q ≥ ρ and any 1 ≥ γ > 0, no algorithm can take a label cover instance
Γ with |V | = q and distinguish between the following cases in Oq,γ(|Γ|δq) time:

• MaxCov(Γ) = |U | and

• MaxCov(Γ) < γ|U |.

This holds even when |ΣU | ≤ (1/γ)O(1).

We remark that the above label cover instance does not have the projection property.
In our final result, we turn to computing MinLab(Γ). Since MaxCov(Γ) = |U | if and only if

MinLab(Γ) = |V |, a statement similar to Theorem 4.1 intuitively holds for distinguishing between
MinLab(Γ) ≤ |V | and MinLab(Γ) > (1 + ε)|V |; i.e. we need O⋆(|ΣV ||V |) time. In the following
theorem, we show that this gap can be substantially amplified, while maintaining the property that
|V | = O(1) (thus independent from the input size).

Theorem 4.4 (MinLab Hardness). Assuming Gap-ETH, there exist constants δ, ρ > 0 such that,
for any positive integers r ≥ q ≥ ρ, no algorithm can take a label cover instance Γ with |V | = q,
and distinguish between the following cases in Oq,r(|Γ|δq) time:
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• MinLab(Γ) = q and

• MinLab(Γ) > r.

This holds even when |ΣU | = (r/q)O(q).

The rest of this section is devoted to proving Theorems 4.2 to 4.4.

4.2 Proof of Theorem 4.2

The proof proceeds by compressing the left vertex set U of a label cover instance from The-
orem 4.1. More specifically, each new left vertex will be a subset of left vertices in the original
instance. In the construction below, these subsets will just be random subsets of the original ver-
tex set of a certain size; however, the only property of random subsets we will need is that they
form a disperser. To clarify our proof, let us start by stating the definition of dispersers here. Note
that, even though dispersers are often described in graph or distribution terminologies in literatures
(e.g. [Vad12]), it is more convenient for us to describe it in terms of subsets.

Definition 4.5. For any positive integersm,k, ℓ, r ∈ N and any constant ε ∈ (0, 1), an (m,k, ℓ, r, ε)-
disperser is a collection I of k subsets I1, . . . , Ik ⊆ [m] each of size ℓ such that the union of
any r different subsets from the collection has size at least (1 − ε)m. In other words, for any
1 ≤ i1 < · · · < ir ≤ k, we have |Ii1 ∪ · · · ∪ Iir | ≥ (1− ε)m.

The idea of using dispersers to amplify gap in hardness of approximation bears a strong re-
semblance to the classical randomized graph product technique [BS92]. Indeed, similar approaches
have been used before, both implicitly (e.g. [BGS98]) and explicitly (e.g. [Zuc96b; Zuc96a; Zuc07]).
In fact, even the reduction we use below has been studied before by Zuckerman [Zuc96b; Zuc96a]!

What differentiates our proof from previous works is the setting of parameters. Since the
reduction size (specifically, the left alphabet size |ΣU |) blows up exponentially in ℓ and previous
results aim to prove NP-hardness of approximating Clique, ℓ are chosen to be small (i.e. O(logm)).
On the other hand, we will choose our ℓ to be Θε(m/r) since we would like to only prove a running
time lower bound of the form |ΣU |Ω(r). Interestingly, dispersers for our regime of parameters are
easier to construct deterministically and we will sketch the construction in Subsection 4.2.1. Note
that this construction immediately implies derandomization of our reduction.

The exact dependency of parameters can be found in the claim below, which also states that
random subsets will be a disperser for such choice of parameters with high probability. Here and
throughout the proof, k and r should be thought of as constants where k ≫ r; these are the same
k, r as the ones in the statement of Theorem 4.2.

Claim 4.6. For any positive integersm,k, r ∈ N and any constant ε ∈ (0, 1), let ℓ = max{m, ⌈3m/(εr)⌉}
and let I1, . . . , Ik be ℓ-element subsets of [m] drawn uniformly independently at random. If ln k ≤
m/r, then I = {I1, . . . , Ik} is an (m,k, ℓ, r, ε)-disperser with probability at least 1− e−m.

Proof. When ℓ = m, the statement is obviously true; thus, we assume w.l.o.g. that ℓ = ⌈3m/(εr)⌉.
Consider any indices i1, . . . , ir such that 1 ≤ i1 < · · · < ir ≤ k. We will first compute the probability
that |Ii1 ∪ · · · ∪ Iir | < (1− ε)m and then take the union bound over all such (i1, . . . , ir)’s.

Observe that |Ii1 ∪ · · · ∪ Iir | < (1 − ε)m if and only if there exists a set S ⊆ [m] of size less
than (1 − ε)m such that Ii1 , . . . , Iir ⊆ S. For a fixed set S ⊆ [m] of size less than (1 − ε)m, since
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Ii1 , . . . , Iir are independently drawn random ℓ-element subsets of [m], we have

Pr[Ii1 , . . . , Iir ⊆ S] =
∏

j∈[r]
Pr[Ij ⊆ S] =

((|S|
ℓ

)
(m
ℓ

)
)r

≤
( |S|
m

)ℓr

< (1− ε)ℓr ≤ e−εℓr < e−3m.

Taking the union bound over all such S’s, we have

Pr[|Ii1 ∪ · · · ∪ Iir | < (1− ε)m] <
∑

S⊆[m],|S|<(1−ε)m

e−3m < 2m · e−3m < e−2m.

Finally, taking the union bound over all (i1, . . . , ir)’s gives us the desired probabilistic bound:

Pr[I is not an (m,k, ℓ, r, ε)-disperser] ≤
∑

1≤i1<·<ir≤k

e−2m ≤ kr · e−2m < e−m,

where the last inequality comes from our assumption that ln k ≤ m/r.

With the definition of dispersers and the above claim ready, we move on to prove Theorem 4.2.

Proof of Theorem 4.2. First, we take a label cover instance Γ̃ = (G̃ = (Ũ , Ṽ , Ẽ),Σ
Ũ
,Σ

Ṽ
, Π̃) as in

Theorem 4.1. We may assume that |ΣŨ |, |ΣṼ | = O(1), and |Ũ | = Θ(|Ṽ |). Moreover, let m = |Ũ |
and n = |Ṽ |; for convenience, we rename the vertices in Ũ and Ṽ so that Ũ = [m] and Ṽ = [n].
Note that it might be useful for the readers to think of Γ̃ as a 3-SAT instance where Ũ is the set of
clauses and Ṽ is the set of variables.

We recall the parameter ε from Theorem 4.1 and the parameters k, r from the statement of
Theorem 4.2. We introduce a new parameter ℓ = 3m/(εr) and assume w.l.o.g. that ℓ is an integer.

The new label cover (MaxCov) instance Γ = (G = (U, V,E),ΣU ,ΣV ,Π) is defined as follows.

• The right vertices and right alphabet set remain unchanged, i.e., V = Ṽ and ΣV = Σ
Ṽ
.

• There will be k vertices in U where each vertex is a random set of ℓ vertices of Ũ . More
specifically, we define U = {I1, . . . , Ik} where each Ii is a random ℓ-element subsets of [m]
drawn independently of each other.

• The left alphabet set ΣU is Σℓ
Ũ
. For each I ∈ U , we view each label α ∈ ΣU as a tuple

(αu)u∈I ∈ (Σ
Ũ
)I ; this is a partial assignment to all vertices u ∈ I in the original instance Γ̃.

• We create an edge between I ∈ U and v ∈ V in E if and only if there exists u ∈ I such that
uv ∈ Ẽ. More formally, E = {Iv : I ∩NG̃(v) 6= ∅}.

• Finally, we define the constraint ΠIv for each Iv ∈ E. As stated above, we view each α ∈ ΣU

as a partial assignment (αu)u∈I for I ⊆ Ũ . The constraint ΠIv then contains all (α, β) such
that (αu, β) satisfies the constraint Π̃uv for every u ∈ I that has an edge to v in Γ̃. More
precisely, ΠIv = {(α, β) = ((αu)u∈I , β) : ∀u ∈ I ∩NG̃(v), (αu, β) ∈ Π̃uv}.

Readers who prefer the 3-SAT/CSP viewpoint of label cover may think of each Ii as a collection
of clauses in the 3-SAT instance that are joined by an operator AND, i.e., the assignment must
satisfy all the clauses in Ii simultaneously in order to satisfy Ii.

We remark that, if Π̃ has the projection property, Π also has projection property.
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Completeness. Suppose there is a labeling (σ
Ũ
, σ

Ṽ
) of Γ̃ that covers all |Ũ | left-vertices. We take

σV = σ
Ṽ

and construct σU by setting σU (I) = (σ
Ũ
(u))u∈I for each I ∈ U . Since (σ

Ũ
, σ

Ṽ
) covers

all the vertices of Ũ , (σU , σV ) also covers all the vertices of U . Therefore, MaxCov(Γ) = |U |.
Soundness. To analyze the soundness of the reduction, first recall Claim 4.6: {I1, . . . , Ik} is an
(m,k, ℓ, r, ε)-disperser with high probability. Conditioned on this event happening, we will prove
the soundness property, i.e., that if MaxCov(Γ̃) < (1− ε)|Ũ |, then MaxCov(Γ) < r.

We will prove this by contrapositive; assume that there is a labeling (σU , σV ) that covers at
least r left vertices Ii1 , · · · , Iir ∈ U . We construct a labeling (σŨ , σṼ ) as follows. First, σṼ is
simply set to σV . Moreover, for each u ∈ Ii1 ∪ · · · ∪ Iir , let σŨ (u) = (σU (Iij ))u where j ∈ [r] is
an index such that u ∈ Iij ; if there are multiple such j’s, just pick an arbitrary one. Finally, for
u ∈ U \ (Ii1 ∪ · · · ∪ Iir), we set σŨ (u) arbitrarily.

We claim that, every u ∈ Ii1 ∪ · · · ∪ Iir is covered by (σ
Ũ
, σ

Ṽ
) in the original instance Γ̃. To

see that this is the case, recall that σŨ (u) = (σU (Iij ))u for some j ∈ [r] such that u ∈ Iij . For
every v ∈ V , if uv ∈ E, then, from how the constraint ΠIij v

is defined, we have (σŨ (u), σṼ (v)) =

(σU (Iij )u, σV (v)) ∈ Π̃uv. In other words, u is indeed covered by (σŨ , σṼ ).
Hence, (σ

Ũ
, σ

Ṽ
) covers at least |Ii1 ∪ · · · ∪ Iir | ≥ (1− ε)m, where the inequality comes from the

definition of dispersers. As a result, MaxCov(Γ̃) ≥ (1− ε)|Ũ |, completing the soundness proof.

Running Time Lower Bound. Our construction gives a MaxCov instance Γ with |U | = k and
|ΣU | = |ΣŨ |ℓ = 2Θ(m/(εr)), whereas |V | and |ΣV | remain n and O(1) respectively. Assume that
Gap-ETH holds and let δ0 be the constant in the running time lower bound in Theorem 4.1. Let
δ be any constant such that 0 < δ < δ0ε/c where c is the constant such that |ΣU | ≤ 2cm/(εr).

Suppose for the sake of contradiction that, for some k ≥ r ≥ ρ, there is an algorithm that
distinguishes whether MaxCov(Γ) = k or MaxCov(Γ) < r in Ok,r(|Γ|δr) time. Observe that, in our
reduction, |U |, |V |, |ΣV | = |ΣU |o(1). Hence, the running time of the algorithm on input Γ is at most
Ok,r(|ΣU |δr(1+o(1))) ≤ Ok,r(|ΣU |δ0εr/c) ≤ O(2δ0m) where the first inequality comes from our choice
of δ and the second comes from |ΣU | ≤ 2cm/(εr). Thanks to the completeness and soundness of the
reduction, this algorithm can also distinguish whether MaxCov(Γ̃) = |Ũ | or MaxCov(Γ̃) < (1−ε)|Ũ |
in time O(2δ0m). From Theorem 4.1, this is indeed a contradiction.

4.2.1 Derandomization

While the reduction in the proof of Theorem 4.2 is a randomized reduction, it can be derandomized
quite easily. We sketch the ideas behind the derandomization below.

Notice that the only property we need from the random ℓ-element subsets I1, . . . , Ik is that it
forms an (m,k, ℓ, r, ε)-disperser. Hence, to derandomize the reduction, it suffices to deterministi-
cally construct such a disperser in 2o(n) time.

To do so, let us first note that Lemma 4.6 implies that an (m′, k, ℓ′, r, ε)-disperser exists where
m′ = r ln k and ℓ′ = 3m′/(εr). For convenience, we assume w.l.o.g. that m′, ℓ′ are integers and
that m′ divides m. Since m′ is now small, we can find such a disperser by just enumerating over
every possible collection of k subsets of [m′] each of size ℓ′ and checking whether it has the desired
property; this takes only (2m

′
)k(k)r poly(m′) = 2O(rk log k) time, which is acceptable for us since r

and k are both constants. Let the (m′, k, ℓ′, r, ε)-disperser that we find be {I ′1, . . . , I ′k}. Finally, to
get from here to the intended (m,k, ℓ, r, ε)-disperser, we only need to view [m] as [m/m′] × [m′]
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and let I1 = [m/m′] × I ′1, . . . , Ik = [m/m′]× I ′k. It is not hard to check that {I1, . . . , Ik} is indeed
an (m,k, ℓ, r, ε)-disperser, which concludes our sketch.

4.3 Proof of Theorem 4.3

The proof proceeds by compressing the right vertex set V of a label cover instance from Theo-
rem 4.1 plus amplifying the hardness gap. The gap amplification step is similar to that in the proof
of Theorem 4.2 except that, since here MaxCov(Γ) is not required to be constant in the soundness
case, we can simply take all subsets of appropriate sizes instead of random subsets as in the previous
proof; this also means that our reduction is deterministic and requires no derandomization.

Proof of Theorem 4.3. First, we take a label cover instance Γ̃ = (G̃ = (Ũ , Ṽ , Ẽ),ΣŨ ,ΣṼ , Π̃) as in

Theorem 4.1. We may assume that |ΣŨ |, |ΣṼ | = O(1), and |Ũ | = Θ(|Ṽ |). For convenience, we

assume w.l.o.g. that Ũ = [m] and Ṽ = [n]. Again, it might be useful for the readers to think of Γ̃
as a 3-SAT instance where Ũ are the set of clauses and Ṽ are the set of variables.

Recall the parameter ε from Theorem 4.1 and the parameters q, γ from Theorem 4.3. Let
ℓ = ln(1/γ)/ε. We assume w.l.o.g. that ℓ is an integer and that n is divisible by q. The new label
cover (MaxCov) instance Γ = (G = (U, V,E),ΣU ,ΣV ,Π) is defined as follows.

• First, we partition Ṽ = [n] into q parts J1, . . . , Jq, each of size n/q. We then let V =

{J1, . . . , Jq}. In other words, we merge n/q vertices of Ṽ into a single vertex in V .

• Let U be
([m]

ℓ

)
, the collection of all ℓ-element subsets of [m] = Ũ .

• The left alphabet set ΣU is Σℓ
Ũ
. For each I ∈ U , we view each label α ∈ ΣU as a tuple

(αu)u∈I ∈ (ΣŨ )
I ; this is a partial assignment to all vertices u ∈ I in the original instance Γ̃.

• Our graph G is simply a complete bipartite graph, i.e., for every I ∈ U and J ∈ V , IJ ∈ E(G).

• The label set of V is ΣV = Σ
n/q

Ṽ
, and the label set of U is ΣU = Σℓ

Ũ
. For each I ∈ U , we

view each label α ∈ ΣU as a tuple (αu)u∈I ∈ (ΣŨ )
I ; this is simply a partial assignment to

all vertices u ∈ I in the original instance Γ̃. Similarly, for each J ∈ V , we view each label
β ∈ ΣV as (βv)v∈J ∈ (Σ

Ṽ
)J .

• Finally, we define ΠIJ for each IJ ∈ E. The constraint ΠIJ contains all (α, β) such that
(αu, βv) satisfies the constraint Π̃uv for every u ∈ I, v ∈ J such that uv ∈ Ẽ. More precisely,
ΠIJ = {(α, β) = ((αu)u∈I , (βv)v∈J ) : ∀u ∈ I, v ∈ J such that uv ∈ Ẽ, (αu, βv) ∈ Π̃uv}.

We remark that Π may not have the projection property even when Π̃ has the property.

Completeness. Suppose that there is a labeling (σŨ , σṼ ) of Γ̃ that covers all |Ũ | left-vertices. We
construct (σU , σV ) by setting σU(I) = (σŨ (u))u∈I for each I ∈ U and σV (J) = (σṼ (v))v∈J for each
J ∈ V . It is easy to see that (σU , σV ) covers all the vertices of U . Therefore, MaxCov(Γ) = |U |.
Soundness. Suppose that MaxCov(Γ̃) < (1 − ε)|Ũ |. Consider any labeling (σU , σV ) of Γ; we will
show that (σU , σV ) covers less than γ|U | left-vertices.

Let I1, . . . , It ∈ U be the vertices covered by (σU , σV ). Analogous to the proof of Theorem 4.2,
we define a labeling (σŨ , σṼ ) as follows. First, σṼ is naturally defined from σV by σṼ = σV (J)v
where J is the partition that contains v. Moreover, for each u ∈ Ii1∪· · ·∪Iir , let σŨ (u) = (σU (Iij ))u
where j ∈ [r] is an index such that u ∈ Iij ; for u ∈ U \ (Ii1 ∪ · · · ∪ Iir), we set σŨ (u) arbitrarily.
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Similar to the proof of Theorem 4.2, it is not hard to see that every vertex in I1∪· · ·∪It is covered
by (σ

Ũ
, σ

Ṽ
) in Γ̃. Since MaxCov(Γ̃) < (1 − ε)|Ũ |, we can conclude that |I1 ∪ · · · ∪ It| < (1− ε)|Ũ |.

Since each Ii is simply an ℓ-size subset of I1 ∪ · · · ∪ It, we can conclude that

t <

(
(1− ε)|Ũ |

ℓ

)
≤ (1− ε)ℓ

(|Ũ |
ℓ

)
= (1− ε)ℓ|U | ≤ e−εℓ|U | = γ|U |.

Hence, (σU , σV ) covers less than γ|U | left-vertices as desired.

Running Time Lower Bound. Our construction gives a MaxCov instance Γ with |V | = q and
|ΣV | = |Σ

Ṽ
|n/q = 2Θ(n/q); note also that |U | = mℓ and |ΣU | = |Σ

Ũ
|ℓ = (1/γ)O(1). Assume that

Gap-ETH holds and let δ0 be the constant from Theorem 4.1. Moreover, let δ be any positive
constant such that δ < δ0/c where c is the constant such that |ΣV | ≤ 2cm/q.

Suppose for the sake of contradiction that, for some q ≥ ρ and 1 ≥ γ > 0, there is an algorithm
that distinguishes whether MaxCov(Γ) = |U | or MaxCov(Γ) < γ|U | in Oq,γ(|Γ|δq) time. Observe
that, in our reduction, |U |, |V |, |ΣU | = |ΣV |o(1). Hence, the running time of the algorithm on input Γ
is Oq,γ(|ΣV |δq(1+o(1))) ≤ Oq,γ(|ΣV |δ0q/c) ≤ O(2δ0m) where the first inequality comes from our choice
of δ and the second comes from |ΣV | ≤ 2cm/q. Thanks to the completeness and soundness of the
reduction, this algorithm can also distinguish whether MaxCov(Γ̃) = |Ũ | or MaxCov(Γ̃) < (1−ε)|Ũ |
in time O(2δ0m). From Theorem 4.1, this is a contradiction.

4.4 Proof of Theorem 4.4

We conclude this section with the proof of Theorem 4.4. The proof proceeds simply by showing
that, if an algorithm can distinguish between the two cases in the statement of Theorem 4.4, it can
also distinguish between the two cases in Theorem 4.3 (with an appropriate value of γ).

Proof of Theorem 4.4. Consider the label cover instance Γ = (G = (U, V,E),ΣU ,ΣV ,Π) given
by Theorem 4.3 when γ = (r/q)−q. Let us assume w.l.o.g. that there is no isolated vertex in G.

Completeness. If MaxCov(Γ) = |U |, then there is a labeling σU : U → ΣU and σV : V → ΣV that
covers every edge; this also induces a multi-labeling that covers every edge. Hence, MinLab(Γ) = |V |.
Soundness. We will prove by contrapositive; suppose that MinLab(Γ) ≤ r. This implies that there
exists a multi-labeling σU : U → ΣU and σV : V → 2ΣV such that

∑
v∈V |σV (v)| ≤ r and every

vertex is covered. Since there is no isolated vertex in G, σV (v) 6= ∅ for all v ∈ V .
Consider σrandV : V → ΣV sampled randomly by, for each v ∈ V , independently pick a random

element of σV (v) and let σrandV (v) be this element. Let us consider the expected number of u ∈ U
that are covered by the labeling (σU , σ

rand
V ). From linearity of expectation, we can write this as

E
σrand
V

|{u ∈ U | (σU , σrandV ) covers u}| =
∑

u∈U
Pr

σrand
V

[
(σU , σ

rand
V ) covers u

]

=
∑

u∈U

∏

v∈N(u)

Pr
[
(σU (u), σ

rand
V (v)) ∈ Πuv

]

≥
∑

u∈U

∏

v∈N(u)

|σV (v)|−1

≥
∑

u∈U

∏

v∈V
|σV (v)|−1
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(From AM-GM inequality) ≥
∑

u∈U

(
1

q

∑

v∈V
|σV (v)|

)−q

≥
∑

u∈U
|U |(r/q)−q

= γ|U |.

where the first inequality comes from the fact that there exists β ∈ σV (v) such that (σU (u), β) ∈
Πuv. This implies that MaxCov(Γ) ≥ γ|U |, which concludes our proof.

5 Hardness for Combinatorial Problems

5.1 Maximum Clique

Recall that, for any graph G, Clique(G) denotes the maximum size of any clique in G. Observe that
we can check if there is a clique of size r by checking if any subset of r vertices forms a clique, and
there are

(|V (G)|
r

)
= O(|V (G)|r) possible such subsets. We show that this is essentially the best we

can do even when we are given a promise that a clique of size q ≫ r exists:

Theorem 5.1. Assuming Gap-ETH, there exist constants δ, r0 > 0 such that, for any positive
integers q ≥ r ≥ r0, no algorithm can take a graph G and distinguish between the following cases
in Oq,r(|V (G)|δr) time:

• Clique(G) ≥ q and

• Clique(G) < r.

The above theorem simply follows from plugging the FGLSS reduction below to Theorem 4.2.

Theorem 5.2 ([FGLSS96]). Given a label cover instance Γ = (G = (U, V,E),ΣU ,ΣV ,Π) with
projection property as in Section 4, there is a reduction that produces a graph HΓ such that
|V (HΓ)| = |U ||ΣU | and Clique(HΓ) = MaxCov(Γ). The reduction takes O(|V (HΓ))|2|V |) time.

For clarity, we would like to note that, while the original graph defined in [FGLSS96] is for multi-
prover interactive proof, analogous graphs can be constructed for CSPs and label cover instances
as well. In particular, in our case, the graph can be defined as follows:

• The vertex set V (HΓ) is simply U × ΣU .

• There is an edge between two vertices (u, α), (u′, α′) ∈ V (HΓ) if and only if, Πuv(α) = Πu′v(α
′)

(i.e., recall that we have a projection constraint, so we can represent the constraint Πuv as a
function Πuv : ΣU → ΣV .)

Proof of Theorem 5.1. Assume that Gap-ETH holds and let δ, ρ be the constants from Theorem 4.2.
Let r0 = max{ρ, 2/δ}. Suppose for the sake of contradiction that, for some q ≥ r ≥ r0, there is an
algorithm A that distinguishes between Clique(G) ≥ q and Clique(G) < r in Oq,r(|V (G)|δr) time.

Given a label cover instance Γ with projection property, we can use A to distinguish whether
MaxCov(Γ) ≥ q orMaxCov(Γ) < r as follows. First, we run the FGLSS reduction to produce a graph
HΓ and we then use A to decide whether Clique(HΓ) ≥ q or Clique(HΓ) < r. From Clique(HΓ) =
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MaxCov(Γ), this indeed correctly distinguishes between MaxCov(Γ) ≥ q and MaxCov(Γ) < r; more-
over, the running time of the algorithm is Oq,r(|V (HΓ)|δr) + O(|V (HΓ))|2|V |) ≤ Oq,r(|Γ|δr) where
the term O(|V (HΓ))|2|V |) comes from the running time used to produce HΓ. From Theorem 4.2,
this is a contradiction, which concludes our proof.

As a corollary of Theorem 5.1, we immediately arrive at FPT inapproximability of Maximum
Independent Set and Maximum Clique.

Corollary 5.3 (Clique is inherently enumerative). Assuming Gap-ETH, Maximum Clique and
Maximum Independent Set are inherently enumerative and thus FPT inapproximable.

5.2 Set Cover, Dominating Set, and Hitting Set

For convenience, we will be working with the Set Cover problem, which is computationally equiv-
alent to Dominating Set (see Appendix D).

Let U be a ground set (or a universe). A set system S over U is a collection of subsets
S = {S1, . . . , Sm} where Si ⊆ U for all i ∈ [m]. We say that S ′ ⊆ S is a feasible set cover of
(U ,S) if ⋃X∈S′ X = U . In the Set Cover problem (SetCov), we are given such a set system (U ,S)
and we are interested in finding a set cover S ′ with minimum cardinality |S ′|. Let SetCov(U ,S)
denote the value of the optimal set cover for (U ,S).

Note that for any set cover instance (U ,S), checking whether there is a set cover of size at most
q can be done in O⋆(|S|q) time by enumerating all

(|S|
q

)
subsets of S of size q. We show that this is

more or less the best we can do: Even when the algorithm is promised the existence of a set cover
of size q (for some constant q), it cannot find a set cover of size f(q) for any computable function
f in time Oq(|S||U|)δq for some constant δ > 0 independent of q and f .

5.2.1 Results

Our main technical contribution in this section is summarized in the following theorem:

Theorem 5.4. There is a reduction that on input Γ = (G = (U, V,E),ΣU ,ΣV ,Π) of MinLab

instance, produces a set cover instance (U ,S) such that

• MinLab(Γ) = SetCov(U ,S)

• |U| = |U ||V ||ΣU | and |S| = |V ||ΣV |

• The reductions runs in time poly(|U|, |S|)

We defer the proof of this theorem to Section 5.2.2. For now, let us demonstrate that, by
combining Theorem 5.4 and Theorem 4.3, we can derive hardness of approximation of SetCov:

Theorem 5.5. Assuming Gap-ETH, there exist universal constants δ, q0 > 0 such that, for any
positive integers r ≥ q ≥ q0, no algorithm can take a set cover instance (U ,S), and distinguish
between the following cases in Oq,r((|S||U|)δq) time:

• SetCov(U ,S) ≤ q.

• SetCov(U ,S) > r.
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Proof. Assume that Gap-ETH holds and let δ, ρ be the constants from Theorem 4.4. Let q0 =
max{ρ, c/δ} where c is the constant such that the running time of the reduction in Theorem 5.4 is
O((|U||S|)c). Suppose for the sake of contradiction that, for some r ≥ q ≥ q0, there is an algorithm
A that distinguishes between SetCov(U ,S) ≤ q and SetCov(U ,S) > r in Oq,r((|S||U|)δq) time.

Given a label cover instance Γ where |V |, |ΣU | = Oq,r(1), we can use A to distinguish whether
MinLab(Γ) ≤ q or MinLab(Γ) > r as follows. First, we run the reduction from Theorem 5.4
to produce a SetCov instance (U ,S) and we then use A to decide whether SetCov(U ,S) ≤ q or
SetCov(U ,S) > r. From SetCov(U ,S) = MinLab(Γ), this indeed correctly distinguishes between
MinLab(Γ) ≤ q andMinLab(Γ) > r; moreover, the running time of the algorithm is Oq,r((|U||S|)δq)+
O((|U||S|)c) ≤ Oq,r(|Γ|δq) where the term O((|U||S|)c) comes from the running time used to produce
(U ,S). From Theorem 4.4, this is a contradiction, which concludes our proof.

As a corollary of Theorem 5.5, we immediately arrive at FPT inapproximability of Set cover,
Dominating set and Hitting set.

Corollary 5.6. Assuming Gap-ETH, Set cover, Dominating set and Hitting set are inherently
enumerative and thus FPT inapproximable.

5.2.2 Proof of Theorem 5.4

Our construction is based on a standard hypercube set system, as used by Feige [Fei98] in proving
the hardness of k-Maximum Coverage. We explain it here for completeness.

Hypercube set system: Let z, k ∈ N be parameters. The hypercube set system H(z, k) is a set
system (U ,S) with the ground set U = [z]k. We view each element of U as a length-k vector ~x where
each coordinate assumes a value in [z]. There is a collection of canonical sets S = {Xi,a}i∈[z],a∈[k]
defined as

Xi,a = {~x : ~xa = i}
In other words, each set Xi,a contains the vectors whose ath coordinate is i. A nice property of this
set system is that, it can only be covered completely if all canonical sets corresponding to some ath

coordinate are chosen.

Proposition 5.7. Consider any sub-collection S ′ ⊆ S. We have
⋃S ′ = U if and only if there is a

value a ∈ [k] for which X1,a,X2,a, . . . ,Xz,a ∈ S ′.

Proof. The if part is obvious. For the “only if” part, assume that for each a ∈ [k], there is a value
ia ∈ [z] for which Xia,a is not in S ′. Define vector ~x by ~xa = ia. Notice that ~x does not belong to
any set in S ′ (By definition, if Xi′,a′ contains ~x, then it must be the case that ~xa′ = i′ = ia′ .)

The construction: Our reduction starts from the MinLab instance Γ = (G,ΣU ,ΣV ,Π). We will
create the set system I = (U ,S). We make |U | different copies of the hypercube set system: For
each vertex u ∈ U , we have the hypercube set system (Uu,Su) = H(NG(u),ΣU ), i.e., the ground set
Uu is a copy of NG(u)

ΣU and Su contains |NG(u)||ΣU | “virtual” sets, that we call {Su
v,a}v∈NG(u),a∈ΣU

where each such set corresponds to a canonical set of the hypercube. We remark that these virtual
sets are not the eligible sets in our instance I. For each vertex v ∈ V , for each label b ∈ ΣV , we
define a set

Sv,b =
⋃

u∈NG(v),(a,b)∈Πuv

Su
v,a
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The set system (U ,S) in our instance is simply:

U =
⋃

u∈U
Uu and S = {Sv,b : v ∈ V, b ∈ ΣV }

Notice that the number of sets is |V ||ΣV | and the number of elements in the ground set is
|U| = |U ||V ||ΣU |. This completes the description of our instance.

Analysis: We argue that the optimal value of Γ is equal to the optimal of (U ,S).
First, we will show that MinLab(Γ) ≤ SetCov(U ,S). Let (σU , σ̂V ) be a feasible MinLab cover

for Γ (recall that σ̂V is a multi-labeling, while σU is a labeling.) For each v ∈ V , the SetCov

solution chooses the set Sv,b for all b ∈ σ̂V (v). Denote this solution by S ′ ⊆ S. The total number
of sets chosen is exactly

∑
v |σ̂(v)|, exactly matching the cost of MinLab(Γ). We argue that this is a

feasible set cover: For each u, the fact that u is covered by (σU , σ̂V ) implies that, for all v ∈ NG(u),
there is a label bv ∈ σ̂V (v) such that (σU (u), bv) ∈ Πuv. Notice that Su

v,σU (u) ⊆ Sv,bv ∈ S ′ for every
v ∈ NG(u), so we have

⋃

S∈S′

S ⊇
⋃

v∈NG(u)

Sv,bv ⊇
⋃

v∈NG(u)

Su
v,σU (u) = Uu

where the last equality comes from Proposition 5.7. In other words, S ′ covers all elements in Uu.
Hence, S ′ is indeed a valid SetCov solution for (U ,S).

To prove the converse, consider a collection of sets {Sv,b}(v,b)∈Λ that covers the whole universe

U . We define the (multi-)labeling σ̂V : V → 2ΣV where σ̂V (v) = {b : (v, b) ∈ Λ} for each v ∈ V .
Clearly,

∑
v∈V |σ̂V (v)| = |Λ|, so the cost of σ̂V as a solution for MinLab is exactly the cost of SetCov.

We verify that all left vertices u ∈ U of Γ are covered (and along the way will define ΣU (u) for
all u ∈ U .) Consider each vertex u ∈ U . The fact that the ground elements in Uu are covered
implies that (from Proposition 5.7) there is a label au ∈ ΣU where all virtual sets {Su

v,au}v∈NG(u)

are included in the solution. Therefore, for each v ∈ NG(u), there must be a label bv ∈ σ̂V (v)
such that aubv ∈ Πuv. We simply define σU (u) = au. Therefore, the vertex u is covered by the
assignment (σU , σ̂V ).

5.3 Maximum Induced Subgraph with Hereditary Properties

In this section, we prove the hardness of maximum induced subgraphs with hereditary property.
Let Π be a graph property. We say that a subset S ⊆ V (G) has property Π if G[S] ∈ Π. Denote
by AΠ(G) the maximum cardinality of a set S that has property Π.

Khot and Raman [KR00] proved a dichotomy theorem for the problem; if Π contains all inde-
pendent sets but not all cliques or if Π contains all cliques but not all independent sets, then the
problem is W[1]-hard. For all other Π’s, the problem is in FPT. We will extend Khot and Raman’s
dichotomy theorem to hold even for FPT approximation as stated more precisely below.

Theorem 5.8. Let Π be any hereditary property.

• If Π contains all independent sets but not all cliques or vice versa, then computing AΠ(G) is
weakly inherently enumerative (and therefore totally FPT inapproximable).

• Otherwise, AΠ(G) can be computed exactly in FPT.
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Surprisingly, the fact that there is a gap in the optimum of our starting point helps make our
reduction simpler than that of Khot and Raman. For convenience, let us focus only on properties
Π’s which contain all independent sets but not all cliques. The other case can be proved analogously.
The main technical result is summarized in the following lemma.

Theorem 5.9. Let Π be any graph property that contains all independent sets but not all cliques.
Then there is a function gΠ = ω(1) such that the following holds:

• If α(G) ≥ q, then AΠ(G) ≥ q.

• If AΠ(G) ≥ r, then α(G) ≥ gΠ(r).

Proof. Since Π contains all independent set, when α(G) ≥ q, we always have AΠ(G) ≥ q.
Now, to prove the converse, let gΠ(r) denote maxH∈Π,|V (H)|=r α(H). If AΠ(G) = r, then there

exists a subset S ⊆ V (G) of size r that has property Π; from the definition of gΠ, α(H) ≥ gΠ(r),
which implies that α(G) ≥ gΠ(r) as well. Hence, we are only left to show that gΠ = ω(1).

To show that this is the case, recall the Ramsey theorem.

Theorem 5.10 (Ramsey’s Theorem). For any s, t ≥ 1, there is an integer R(s, t) s.t. every graph
on R(s, t) vertices contains either a s-clique or a t-independent set. Moreover, R(s, t) ≤

(s+t−2
s−1

)
.

Recall that, from our assumption of Π, there exists a fixed integer sΠ such that Π does not
contain an sΠ-clique. Hence, from Ramsey’s Theorem, gΠ(r) ≥ max{t | R(sΠ, t) ≤ r}. In particular,
this implies that gΠ(r) ≥ ΩsΠ(r

1/(sΠ−1)). Hence, limr∞ gΠ(r) = ∞ (i.e. gΠ = ω(1)) as desired.

In other words, the identical transformation G 7→ G is a (q, gΠ(r))-FPT gap reduction from
Clique to Maximum Induced Subgraph with property Π. Hence, by applying Proposition 3.6, we
immediately arrive at the following corollary.

Corollary 5.11. Assuming Gap-ETH, for any property Π that contains all independent sets but not
all cliques (or vice versa), Maximum Induced Subgraph with property Π is Ω(gΠ)-weakly inherently
enumerative where gΠ is the function from Theorem 5.9.

We remark here that, for some properties, gΠ can be much larger than the bound given by
the Ramsey’s Theorem; for instance, if Π is planarity, then the Ramsey’s Theorem only gives
gΠ(r) = Ω(r1/5) but it is easy to see that, for planar graphs, there always exist an independent set
of linear size and gΠ(r) is hence as large as Ω(r).

5.4 Maximum Balanced Biclique, Maximum Induced Matching on Bipartite
Graphs and Densest k-Subgraph

We next prove FPT inapproximability for the Maximum Balanced Biclique, Maximum Induced
Matching on Bipartite Graphs and Densest k-Subgraph. Unlike the previous proofs, we will not
reduce from any label cover problem; the starting point for the results in this section will instead
be a recent construction of Manurangsi for ETH-hardness of Densest k-Subgraph [Man17a]. By
interpreting this construction in a different perspective, we can modify it in such a way that we
arrive at a stronger form of inherently enumerative hardness for Clique. More specifically, the main
theorem of this section is the following theorem, which is a stronger form of Theorem 5.1 in that
the soundness not only rules out cliques, but also rules out bicliques as well.
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Theorem 5.12. Assuming Gap-ETH, there exist constants δ, ρ > 0 such that, for any positive
integers q ≥ r ≥ ρ, no algorithm can take a graph G and distinguish between the following cases in
Oq,r(|V (G)|δ

√
r) time:

• Clique(G) ≥ q.

• Biclique(G) < r.

The weakly inherently enumerativeness (and therefore totally FPT inapproximability) of Max-
imum Balanced Biclique and Maximum Induced Matching on Bipartite Graphs follows easily from
Theorem 5.12. We will show these results in the subsequent subsections; for now, let us turn our
attention to the proof of the theorem.

The main theorem of this section can be stated as follows.

Theorem 5.13. For any d, ε > 0, there is a constant γ = γ(d, ε) > 0 such that there exists a
(randomized) reduction that takes in a parameter r and a 3-SAT instance φ with n variables and m
clauses where each variable appears in at most d constraints and produces a graph Gφ,r = (Vφ,r, Eφ,r)
such that, for any sufficiently large r (depending only on d, ε but not n), the following properties
hold with high probability:

• (Size) N := |Vφ,r| ≤ 2Od,ε(n/
√
r).

• (Completeness) if SAT(φ) = m, then Clique(Gφ,r) ≥ Nγ/
√
r.

• (Soundness) if SAT(φ) ≤ (1− ε)m, then Biclique(Gφ,r) < r.

It is not hard to see that, in the Gap-ETH assumption, we can, without loss of generality,
assume that each variable appears in only a bounded number of clauses (See [MR16, p. 21]).
Hence, Theorem 5.13 together with Gap-ETH implies Theorem 5.12.

As mentioned earlier, our result builds upon an intermediate lemma used to prove the hard-
ness of approximating Densest k-Subgraph in [Man17a]. Due to this, it will be easier to de-
scribe our reduction in terms of the reduction from [Man17a]; in this regard, our reduction can be
viewed as vertex subsampling (with appropriate probability) of the graph produced by the reduc-
tion from [Man17a]. The reduction is described formally in Figure 1. Note that the two parameters
ℓ and p will be chosen as Θd,ε(n/

√
r) and 2Θd,ε(ℓ

2/n)/
(n
ℓ

)
respectively where the constants in Θd,ε(·)

will be selected based on the parameters from the intermediate lemma from [Man17a].
The main lemma of [Man17a] is stated below. Roughly speaking, when SAT(φ) ≤ (1− ε)m, the

lemma gives an upper bound on the number of occurrences of Kt,t for every t > 0. When p and t
are chosen appropriately, this implies that w.h.p. there is no t-biclique in our subsampled graph.
Note that the size and completeness properties are obvious from the construction while the exact
statement of the soundness can be found in the proof of Theorem 8 of [Man17a].

Lemma 5.14 ([Man17a]). Let d, ε, φ, n,m, ℓ be as in Theorem 5.13 and Figure 1. There is a
constant δ, λ > 0 depending only on d, ε such that, for any sufficiently large n, the graph Gφ,ℓ =
(Vφ,ℓ, Eφ,ℓ) described in Figure 1 has the following properties

• (Size) |Vφ,ℓ| =
(n
ℓ

)
2ℓ.

• (Completeness) if SAT(φ) = m, G̃φ,ℓ contains a
(n
ℓ

)
-clique.
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Input: a 3-SAT instance φ and parameters p ∈ (0, 1) and ℓ ∈ N such that ℓ ≤ n.
Output: a graph Gφ,ℓ,p = (Vφ,ℓ,p, Eφ,ℓ,p).
The graph Gφ,ℓ,p is generated as follows.

• First, we create a graph G̃φ,ℓ = (Ṽφ,ℓ, Ẽφ,ℓ) as constructed in [Man17a]. More specifically,

the vertex set Ṽφ,ℓ and the edge set Ẽφ,ℓ are defined as follows.

– The vertex set Ṽφ,ℓ consists of all partial assignments of ℓ variables, i.e., Ṽφ,ℓ := {σ :

S → {0, 1} | S ∈
(X
ℓ

)
} where X is the set of all variables in φ.

– There exists an edge between two vertices σ1 : S1 → {0, 1} and σ2 : S2 → {0, 1} ∈
Ṽφ,ℓ if and only if (1) they are consistent (i.e., σ1(S1 ∩ S2) = σ2(S1 ∩ S2)) and
(2) the partial assignment induced by σ1, σ2 does not violate any constraint (i.e.,
every constraint that lies entirely inside S1∪S2 is satisfied by the partial assignment
induced by σ1, σ2).

• Our graph Gφ,ℓ,p = (Vφ,ℓ,p, Eφ,ℓ,p) can then be easily generated as follows.

– Let Vφ,ℓ,p be a random subset of Ṽφ,ℓ such that each vertex v ∈ Ṽφ,ℓ is included
independently and randomly in Vφ,ℓ,p with probability p.

– We connect u, v ∈ Vφ,ℓ,p if and only if (u, v) ∈ Ẽφ,ℓ.

Figure 1: The Reduction from Gap-3SAT to Maximum Balanced Biclique

• (Soundness) if SAT(φ) ≤ (1− ε)m, then G̃φ,ℓ contains at most 24n(2−λℓ2/n
(n
ℓ

)
)2t occurrences9

of Kt,t for any t > 0.

Theorem 5.13 follows rather easily from the above lemma by choosing appropriate ℓ and p.

Proof of Theorem 5.13. We let Gφ,r = Gφ,ℓ,p from the reduction in Figure 1 with parameters ℓ =

4n√
λr

and p = 2
λℓ2

2n /
(n
ℓ

)
. For convenience, we assume without loss of generality that λ < 1.

Size. Since each vertex in Vφ,ℓ is included that Vφ,ℓ,p independently with probability p, we have

E[|Vφ,ℓ,p|] = p|Vφ,ℓ| = 2ℓ+
λℓ2

2n ≤ 22ℓ. Hence, from Chernoff bound, |Vφ,ℓ,p| ≤ 210ℓ = 2Ωd,ε(n/
√
r) w.h.p.

Completeness. Suppose that φ is satisfiable. Let C be the clique of size
(n
ℓ

)
in G̃φ,ℓ, which is

guaranteed to exist by Lemma 5.14. From how Gφ,ℓ,p is defined, C∩Vφ,ℓ,p induces a clique in Gφ,ℓ,p.

Moreover, E[|C ∩ Vφ,ℓ,p|] = p|C| = 2
λℓ2

2n . Again, from Chernoff bound, Clique(Gφ,ℓ,p) ≥ 2
λℓ2

2n w.h.p.

Combined with the above bound on N , Clique(Gφ,ℓ,p) ≥ Nγ/
√
r w.h.p. when γ :=

√
λ/20 = Od,ε(1).

Soundness. Suppose that SAT(φ) ≤ (1 − ε)m. Consider any subsets S, T ⊆ Ṽφ,ℓ that is an

occurrence of Kr,r in G̃φ,ℓ. From how Gφ,ℓ,p is defined, Biclique(Gφ,ℓ,p) ≥ r if and only if, for at

9We say that S, T ⊆ Vφ,ℓ is an occurrence of Kt,t if |S| = |T | = t, S ∩T = ∅ and, for every s ∈ S, t ∈ T , there is an
edge between s and t in Gφ,ℓ. The number of occurrences of Kt,t of Gφ,ℓ is simply the number of such pairs (S, T )’s.
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least one such pair (S, T ), S ∪ T ⊆ Vφ,ℓ,p. The probability of this event is bounded above by

∑

S,T⊆Ṽφ,ℓ

S,T is an occurrence of Kr,r in G̃φ,ℓ

Pr[S, T ⊆ Vφ,ℓ,p] ≤ 24n
(
2−λℓ2/n

(
n

ℓ

))2r

· p2r

= 24n
(
2−

λℓ2

2n

)2r

= o(1).

where the first inequality comes from the bound in the soundness of Lemma 5.14 and the fact that
the sampling of each vertex is done independently.

As a result, the subsampled graph Gφ,ℓ,p is Kr,r-free with high probability as desired.

5.4.1 Maximum Balanced Biclique

We now give a simple reduction from the “Clique vs Biclique” problem (from Theorem 5.12) to the
Maximum Balanced Biclique problem, which yields FPT inapproximability of the latter.

Lemma 5.15. For any graph G = (V,E), let Be[G] = (VBe[G], EBe[G]) be the bipartite graph whose
vertex set is VBe[G] := V × [2] and two vertices (u, i), (v, j) are connected by an edge if and only if
(u, v) ∈ E or u = v, and i 6= j. Then the following properties hold for any graph G.

• Biclique(Be[G]) ≥ Clique(G).

• Biclique(Be[G]) ≤ 2Biclique(G) + 1.

Proof. It is easy to see that Biclique(Be[G]) ≥ Clique(G) since, for any C ⊆ V that induces a clique
in G, C × [2] ⊆ VBe[G] induces a |C|-biclique in Be[G].

To see that Biclique(Be[G]) ≤ 2Biclique(G)+1, consider any S ⊆ VBe[G] that induces a k-biclique
in Be[G]. Note that S can be partitioned into S1 = S ∩ (V × {1}) and S2 = S ∩ (V × {2}).

Now consider the projections of S1 and S2 into V (G), i.e., T1 = {v : (v, 1) ∈ S} and T2 = {v :
(v, 2) ∈ S}. Note that |T1| = |T2| = k. Since S1 ∪ S2 induces a biclique in Be[G], we have, for
every u ∈ T1 and v ∈ T2, either u = v or (u, v) ∈ E. Observe that if there were no former case
(i.e., T1 ∩ T2 = ∅), then we would have a k-biclique in G. Even if T1 ∩ T2 6= ∅, we can still get back
a ⌊k/2⌋-biclique of G by uncrossing the sets T1 and T2 in a natural way by assigning half of the
intersection to T1 and the other half to T2. To be formal, we partition T1 ∩ T2 into roughly equal
sets U1 and U2 (i.e., ||U1| − |U2|| ≤ 1), and we then define new sets T ′

1 and T ′
2 by

T ′
1 = (T1 \ T2) ∪ U1 and T ′

2 = (T2 \ T1) ∪ U2.

It is not hard to see that G has an edge between every pair of vertices between T ′
1, T

′
2 and

that |T ′
1|, |T ′

2| ≥ ⌊k/2⌋. Thus, Biclique(G) ≥ ⌊k/2⌋ ≥ (k − 1)/2. Therefore, Biclique(Be[G]) ≤
2Biclique(G) + 1 as desired.

Thanks to the above lemma, we can conclude that the reduction G 7→ Be[G] is a (2q, (r+1)/2)-
FPT gap reduction from the “Clique vs Biclique” problem to Maximum Balanced Biclique, although
the former is not a well-defined optimization problem. Nevertheless, it is easy to check that a proof
along the line of Proposition 3.6 still works and it gives the following result:
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Corollary 5.16. Assuming Gap-ETH, Maximum Balanced Biclique are Ω(
√
r)-weakly inherently

enumerative and thus FPT inapproximable.

It is worth noting here that the Maximum Edge Biclique problem, a well-studied variant of the
Maximum Balanced Biclique problem where the goal is instead to find a (not necessarily balanced)
complete bipartite subgraph of a given bipartite graph that contains as many edges as possible,
is in FPT; this is because the optimum is at least the maximum degree, but, when the degree is
bounded above by r, all bicliques can be enumerated in 2O(r) poly(n) time.

5.4.2 Maximum Induced Matching on Bipartite Graphs

Next, we prove the FPT hardness of approximation for the Maximum Induced Matching problem
on bipartite graphs. Again, the proof will be a simple reduction from Theorem 5.12. The argument
below is similar to that used in Lemma IV.4 of [CLN13b]. We include it here for completeness.

Lemma 5.17. For any graph G = (V,E), let Be[Ḡ] = (VBe[Ḡ], EBe[Ḡ]) be the bipartite graph whose
vertex is VBe[Ḡ] := V × [2] and two vertices (u, i), (v, j) are connected by an edge if and only if
(u, v) /∈ E or u = v, and i 6= j. Then, the following properties hold for any graph G.

• IM(Be[Ḡ]) ≥ Clique(G).

• IM(Be[Ḡ]) ≤ 2Biclique(G) + 1.

Proof. Consider any S ⊆ V that induces a clique in G. It is obvious that S × [2] ⊆ VBe[Ḡ] induces

a matching in Be[Ḡ].
Next, consider any induced matching matching {(u1, v1), . . . , (um, vm)} of size m. Assume

w.l.o.g. that u1, . . . , um ∈ V × {1} and v1, . . . , vm ∈ V × {2}. Define π1 : V × [2] → V to be a
projection operator that projects on to the first coordinate.

Let S1 = π1({u1, . . . , u⌊m/2⌋}) and S2 = π1({v⌈m/2⌉+1, . . . , vm}). From the definition of Be[Ḡ]
and from the fact that there is no edge between (S1 × {1}) and (S2 × {2}), it is easy to check that
S1 ∩ S2 = ∅ and, for every u ∈ S1 and v ∈ S2, (u, v) ∈ E. In other words, (S1, S2) is an occurrence
of ⌊m/2⌋ in G. Hence, we can conclude that IM(Be[Ḡ]) ≤ 2Biclique(G) + 1.

Similar to Biclique, it is easy to see that the above reduction implies the following running time
lower bound and FPT inapproximability for Maximum Induced Matching on Bipartite Graphs.

Corollary 5.18. Assuming Gap-ETH, Maximum Induced Matching on Bipartite Graphs are Ω(
√
r)-

weakly inherently enumerative and thus FPT inapproximable.

5.4.3 Densest k-Subgraph

Finally, we will show FPT inapproximability result for Densest k-Subgraph. Alas, we are not
able to show o(k)-ratio FPT inapproximability, which would have been optimal since the trivial
algorithm gives an O(k)-approximation for the problem. Nonetheless, we will show an ko(1)-factor
FPT inapproximability for the problem. We note here that below we will state the result as if k is
the parameter; this is the same as using the optimum as the parameter, since (in the non-trivial
case) the optimum is always between ⌊k/2⌋ and

(k
2

)
(inclusive).

To derive our result, we resort to a well-known result in extremal combinatorics called the
Kővári-Sós-Turán (KST) Theorem, which basically states that if a graph does not contain small
bicliques, then it is sparse. The KST theorem is stated formally below.
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Theorem 5.19 (Kővári-Sós-Turán (KST) Theorem [KST54]). For every positive integer n and
t ≤ n, every Kt,t-free graph on n vertices has at most O(n2−1/t) edges (i.e., density O(n−1/t)).

We remark here that a generalization of the KST Theorem was also a crucial ingredient in
the proof of ETH-hardness of approximating Densest k-Subgraph in [Man17a]. The situation is
simpler for us here, since we can simply apply the KST Theorem to Theorem 5.12, which yields
the following theorem.

Theorem 5.20. Assuming Gap-ETH, there exist a constant δ > 0 and an integer ρ > 0 such that,
for any integer q ≥ r ≥ ρ, no algorithm can take a graph G = (V,E) and distinguish between the
following cases in Oq,r(|V |δ

√
r) time:

• Denq(G) = 1.

• Denq(G) < O(q−r).

From the above theorem, it is easy to show the ko(1)-factor FPT inapproximability of Densest
k-Subgraph as formalized below. We note here that our result applies to a special case of Densest
k-Subgraph in which the input graph is promised to contain a k-clique; this problem is sometimes
referred to as Densest k-Subgraph with perfect completeness [BKRW17; Man17a].

Lemma 5.21. Assuming Gap-ETH, for every function f = o(1) and every function t, there is no
t(k) · nO(1)-time algorithm such that, given an integer k and any graph G = (V,E) on n vertices
that contains at least one k-clique, always output S ⊆ V of size k such that Den(S) ≥ k−f(k).

Proof. Suppose for the sake of contradiction that there is a t(k) · |V |D-time algorithm A that, given
an integer k and any graph G = (V,E) that contains a k-clique, always outputs S ⊆ V of size k
such that Den(S) ≥ k−f(k) for some function f = o(1), some function t and some constant D > 0.

Let r = max{⌈ρ⌉, ⌈(D/δ)2⌉} where ρ is the constant from Theorem 5.20. Note that O(q−r) =
qO(1)/ log q−r. Now, since limq→∞ f(q) + O(1)/ log q = 0, there exists a sufficiently large q such
that the term O(q−r) is less than q−f(q). In other words, A can distinguish between the two cases
in Theorem 5.20 in time t(q) · nD = Oq,r(|V |δ

√
r), which would break Gap-ETH.

6 Conclusion and Discussions

In this paper, we prove that Clique and DomSet are totally FPT inapproximable. In fact, we
show a stronger property that they are inherently enumerative, i.e., the best way to approximate
both problems is to essentially enumerate all possibilities. Since Clique and DomSet are complete
problems for the class W[1] and W[2] respectively, it might be possible that these two problems can
be sources of FPT-inapproximability of many other problems that admit no FPT algorithms.

We would like to also mention that there are some problems that are known to be totally FPT-
inapproximable under weaker assumptions; examples of such problems are independent dominating
set and induced path. The former has been shown to be FPT-inapproximable under the assumption
FPT 6= W[2] in [DFMR08]. For the induced path problem, we show in Appendix C that it is FPT-
inapproximable under the assumption FPT 6= W[1]. It would be interesting to understand whether
it is possible to also base total FPT-inapproximability of Clique and DomSet under assumptions
that are weaker than Gap-ETH, such as FPT 6= W[1] or ETH. To this end, we note that Chen
and Lin [CL16] showed inapproximability for DomSet under FPT 6= W[1] (resp., ETH), but their
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inapproximability ratio is only any constant (resp., log1/4−ε(OPT)); if their result could be extended
to exclude f(OPT)-approximation for any function f , then DomSet would indeed be totally FPT-
inapproximable under weaker assumptions.

Another interesting further research direction is to study the trade-off between the running time
and the approximation ratio of problems that are known to be FPT-approximable or admit FPT
(exact) algorithms. The exploration of such trade-off may be useful in both theory and practice.
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A Gap Problems vs Approximation Algorithms

In this section, we establish the connections between gap problems and FPT approximation algo-
rithm by proving Proposition 2.3 and Proposition 2.4. Proposition 2.3 is in fact implied by a result
due to Chen et al. [CGG06, Proposition 4]; we provide a proof of it here for completeness. On the
other hand, we are not aware of any prior proof of Proposition 2.4.

Proof of Proposition 2.3. We will prove the contrapositive of the statement in the proposition.
Suppose that (2) is false, i.e., there exist computable functions t : N → N, f : N → [1,∞) and an
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algorithm B such that, for every instance I of Π, B on input I runs in time t(OPTΠ(I)) · |I|D for
some constant D and outputs y ∈ SOLΠ(I) of cost at most OPTΠ(I) · f(OPTΠ(I)).

Let t′ : N → N and f ′ : N → [1,∞) be functions that are defined by t′(k) = maxi=1,...,k t(i) and
f ′(k) = maxi=1,...,k f(i). Since t and f are computable, t′ and f ′ are also computable.

Let A be an algorithm that takes in an instance I of Π and a positive integer k, and works as
follows. A simulates an execution of B on I step-by-step. If B(I) does not finish within t′(k) · |I|D
time steps, then A terminates the execution and returns 0. Otherwise, let y be the output of B(I).
A computes COSTΠ(I, y); A then returns 1 if this cost is at most k · f ′(k) and returns 0 otherwise.

We claim that A is an f ′-FPT gap approximation algorithm of Π. To see that this is the case,
first notice that the running time of A is O(t′(k) · |I|D + |I|O(1)) where |I|O(1) denotes the time used
to compute the solution cost. Moreover, if OPTΠ(I) > k · f ′(k), then it is obvious to see that A
always output 0. Finally, if OPTΠ(I) ≤ k, then, by our assumption on B and the definitions of t′

and f ′, B(I) finishes in time t(OPTΠ(I)) · |I|D ≤ t′(k) · |I|D and the output solution y has cost at
most OPTΠ(I) · f(OPTΠ(I)) ≤ k · f ′(k). Hence, A always outputs 1 in this case.

As a result, A is an f ′-FPT gap approximation algorithm for Π, which concludes our proof.

Proof of Proposition 2.4. We will again prove the contrapositive of the statement in the proposition.
Suppose that (2) is false, i.e., there exist computable functions t : N → N, f : N → [1,∞) such
that k/f(k) is non-decreasing and limk→∞ k/f(k) = ∞, and an algorithm B such that, for every
instance I of Π, B on input I runs in time t(OPTΠ(I)) · |I|D for some constant D and outputs
y ∈ SOLΠ(I) of cost at least OPTΠ(I)/f(OPTΠ(I)).

Let t′ : N → N be a function defined by t′(k) = maxi=1,...,k t(i); clearly, t
′ is computable.

Let A be an algorithm that takes in an instance I of Π and a positive integer k, and works as
follows. A simulates an execution of B on I step-by-step. If B(I) does not finish within t′(k) · |I|D
time steps, then A terminates the execution and returns 1. Otherwise, let y be the output of B(I).
A computes COSTΠ(I, y); A then returns 1 if this cost is at least k/f(k) and returns 0 otherwise.

We claim that A is an f -FPT gap approximation algorithm of Π. To see that this is the case,
first notice that the running time of A is O(t′(k) · |I|D + |I|O(1)) where |I|O(1) denotes the time used
to compute the solution cost. Moreover, if OPTΠ(I) < k/f ′(k), then the running time of B(I) is
at most t(OPTΠ(I)) · |I|D ≤ t′(k) · |I|D, which implies that A returns 0.

Suppose, on the other hand, that OPTΠ(I) ≥ k. If B(I) finishes in time t′(k) · |I|D, then,
from the guarantee of B, it must output y ∈ SOLΠ(I) with COSTΠ(I, y) ≥ OPTΠ(I)/f(OPTΠ(I)),
which is at least k/f(k) since k/f(k) is non-decreasing. Furthermore, if B(I) does not finish in the
specified time, then A also returns 1 as desired.

As a result, A is an f -FPT gap approximation algorithm for Π, which concludes our proof.

B Totally FPT Inapproximable Through FPT Gap Reductions
(Proof of Proposition 3.5)

We will only show the proof when both Π0 and Π1 are maximization problems. Other cases can be
proved analogously and therefore omitted.

We assume that (i) holds, and will show that if the “then” part does not hold, then (ii) also
does not hold. Recall from Definition 3.4 that (i) implies that there exists C,D > 0 such that the
reduction from Π0 (with parameters q and r) to Π1 takes Oq,r(|I0|C) time and always output an
instance I1 of size at most Oq,r(|I0|D) on every input instance I0. Now assume that the “then” part
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does not hold; i.e. Π1 admits a (t(k)|I1|F )-time h-FPT gap approximation algorithm A for some
function h(k) = o(k) and constant F . We will show the following claim which says that (ii) does
not hold (by Definition 2.1).

Claim B.1. There exists a function k ≥ g′(k) = ω(1) and an algorithm B that takes any in-
put instance I0 of problem Π0 and integer k, and in Ok(|I0|O(1)) time can distinguish between
OPTΠ0(I0) ≥ k and OPTΠ0(I0) < g′(k).

We now prove the claim by constructing an algorithm B that performs the following steps.
Given I0 and k, B applies the reduction on instance I0 and parameters k and r = f(k)

h(f(k)) . Denote

by I1 the instance of Π1 produced by the reduction, so we have that |I1| = Ok(|I0|O(1)). The
following properties are immediate from the definitions of the FPT gap reductions (Definition 3.4).

• If OPTΠ0(I0) ≥ k, we must have OPTΠ1(I1) ≥ f(k).

• Also, if OPTΠ0(I0) < g′(k) := g( f(k)
h(f(k)) ), then we will have OPTΠ1(I1) < r = f(k)

h(f(k))

Since A is an h-FPT gap approximation algorithm, it can distinguish between the above two
cases, i.e. running A on (I1, f(k)) will distinguish the above cases, therefore distinguishing between

OPTΠ0(I0) ≥ k and OPTΠ0(I0) < g′(k) = g( f(k)
h(f(k)) ). This algorithm runs in time Ok(|I1|F ) =

Ok(|I0|DF ) = Ok(|I0|O(1)). Notice also that

g′(k) = g(
f(k)

h(f(k))
) ≤ g(f(k)) ≤ k

where the first inequality is because f(k)/h(f(k)) ≤ f(k) (recall that h(f(k)) ≥ 1 by Definition 2.1)
and because g is non-decreasing, and the second inquality is by the claim below.

Claim B.2. For any totally-FPT-inapproximable problem Π0, any functions g and f that satisfy
conditions in Definition 3.4 and any integer x, g(f(x)) ≤ x.

Proof. For any integer x, consider instance I0 such that OPTΠ0(I0) ≥ x (such I0 exists because
OPTΠ0 = ω(1); otherwise Π0 is not totally-FPT-inapproximable (e.g. we can always output 1 if
Π0 is a maximization problem)). By the second condition in Definition 3.4, OPTΠ1(I1) ≥ f(x).
Applying the contrapositive of the third condition with r = f(x) (thus OPTΠ1(I1) ≥ r), we have
OPTΠ0(I0) ≥ g(r) = g(f(x)). Thus, x ≥ OPTΠ0(I0) ≥ g(f(x)) as claimed.

To complete the proof, one only needs to argue that g( f(k)
h(f(k)) ) = ω(1), and this simply follows

from the fact that f(k) = ω(1), g(k) = ω(1) and that k/h(k) = ω(1).

C FTP-Inapproximability under W[1]-Hardness

In this section, we show an example of problems that have no FPT-approximation algorithm unless
W[1]=FPT, namely the maximum induced path problem (InducedPath).

In InducedPath, we are given a graph G, and the goal is to find a maximum size subset of
vertices S ⊆ V (G) such that S induces a path in G. We will show that InducedPath has no FPT-
approximation algorithm. Implicit in our reduction is a reduction from k-Clique to the multi-colored
clique problem.

38



Theorem C.1. Unless W[1]=FPT, for any positive integers q : 1 ≤ q ≤ n1−δ, for any δ < 0, given
a graph G on n vertices and for any function t : R → R, there is no t(k) poly(n)-time algorithm
that distinguishes between the following two cases:

• InducedPath(G) ≥ 2q · k.

• InducedPath(G) ≤ 4(k − 1).

Proof. The reduction is as follows. Take a graph H of a k-Clique instance. Then we construct a
graph G as follows. First, we create intermediate graphs Z1, . . . , Zq. Each graph Zi for i ∈ [q] is
created by making k copies of V (H), namely, Vi,1, . . . , Vi,k and form a clique on Vi,j for each j ∈ [k].
So, now, we have k disjoint cliques. For each vertex v ∈ V (H), we pick a copy of v, one from each
Vi,j, say vi,j, and we form a clique on {vi,1, . . . , vi,k}. Next, for each edge uv 6∈ E(H), we add edges
ui,jvi,j′ , for all j, j′ ∈ [k], where ui,j and vi,j′ are the copy of u in Vi,j and the copy of v in Vi,j′ ,
respectively. Next, we add a dummy vertex xi,j for each Vi,j and add edges joining xi,j to every
vertex of Vi,j and to every vertex of Vi,j−1 if j ≥ 2. Finally, we join the graph Zi for all i ∈ [q] to
be of a form (Z1, Z2, . . . , Zk). To be precise, for each graph Zi with i ≥ 2, we join the vertex xi,1
(which belongs to Zi) to every vertex of Vi−1,q (which belongs to Zi+1).

Completeness. First, suppose Clique(H) ≥ k. We will show that InducedPath(G) ≥ 2q · k. We
take a subset of vertices S ⊆ V (H) that induces a clique on H. Let us name vertices in S by
v1, . . . , vk. For each j ∈ [k], we pick the copies vji,j of vj from Vi,j for all i ∈ [q]. We then pick all
the vertices xi,j for i ∈ [k] and j ∈ [q]. We denote this set of vertices by S′. It is not hard to see

that for any distinct vertices vj, vj
′ ∈ S, their copies vji,j and v

j′

i′,j′ are not adjacent, and each vertex

xi,j has exactly two neighbors: vji,j and u
j−1
i,j−1 (or uki−1,k). Therefore, S

′ induces a path in G of size
2qk.

Soundness. Suppose Clique(H) < k, i.e., H has no clique of size k. We will show that InducedPath(G) ≤
4(k−1). To see this, let S′ ⊆ V (G) be a subset of vertices that induces a path G[S′] in G. Observe
that, for i ∈ [q], G[S′] ∩ Zi must be a path of the form (xi,a, v

a
i,a, . . . , xi,k, v

b
i,b). Moreover, vℓi,ℓ and

vℓ
′

i,ℓ′ are not adjacent in G for any ℓ 6= ℓ′, meaning that vℓi,ℓ and vℓ
′

i,ℓ′ are not copies of the same

vertex in H, and the set {vℓ}a≤ℓ≤b induces a clique in H. Thus, a− b+ 1 < k, and G[S′] ∩ Zi can
have at most 2(k − 1) vertices. It follows that any induced path G[S′] of G can contain vertices
from at most two subgraphs, say Zi and Zi+1. Therefore, we conclude that |S′| ≤ 4(k − 1).

The FPT-inapproximable of InducedPath follows directly from Theorem C.1.

Corollary C.2. Unless W[1]=FPT, there is no f(k)-approximation algorithm for InducedPath that
runs in t(k) poly(n)-time for any functions f and t depending only on k.

D Known Connections between Problems

In this section, we discuss known equivalences between problems in more detail.

Dominating Set and Set Cover: It is easy to see that DomSet is a special case of SetCov, and
the reduction from SetCov to DomSet is by phrasing U and S as vertices, forming a clique on S and
there is an edge joining a subset Si ∈ S and element uj ∈ U if and only if uj is an element in Si.
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Induced Matching and Independent Set: We show that Induced Matching is at least as hard
to approximate as Independent Set. Let G be an input graph of Independent Set. We create
a graph G′ by, for each vertex v ∈ V (G), create a vertex v′ and an edge vv′. Notice that any
independent set S of G corresponds to an induced matching in G′: For each v ∈ S, we have an
edge vv′ in the set M. Conversely, for any induced matching M of G′, we may assume that the
matching only chooses edges of the form vv′.

More hereditary properties: We discuss some more natural problems in this class. If we define
Π to be a set of all planar graphs, this is hereditary. The corresponding optimization problem is
that of computing a maximum induced planar graphs. If we define Π to be a set of all forests, this
is also hereditary, and it gives the problem of computing a maximum induced forest.

E Proof Sketch of Theorem 4.1

We will sketch the proof of Theorem 4.1.
In the forward direction, we use a standard reduction, which is sometimes referred to as

the clause-variable game [AIM14]. Specifically, we transform a 3-SAT instance ψ on n variables
x1, . . . , xn and m clauses C1, . . . , Cm into a label cover instance Γ = (G = (U, V,E),ΣU ,ΣV ,Π)
by transforming clauses into left vertices in U and variables into right vertices in V , and there is
an edge joining a pair of vertices Ci and xj if xj appears in Ci. We take partial assignments as
the label sets ΣU and ΣV , and a constraint on each edge asks for a pair (α, β) of labels that are
consistent, i.e., they assign the same value to the same variable (e.g., α = (x1 : 1, x2 : 0, x3 : 1)
and β = (x1 : 1) are consistent whereas α is not consistent with β′ = (x2 : 1)), and α causes Ci to
evaluate to true (i.e., some of the literal in Ci is assigned to true by α). We denote the evaluation
of a clause Ci on a partial assignment α by Ci(α).

To be precise, we have

U = {C1, . . . , Cm}, V = {x1, . . . , xn}, E = {Cixj : xj appears in the clause Ci}
ΣU = {0, 1}3, ΣV = {0, 1}, ΠCixj = {(α, β) : α and β are consistent ∧ Ci(α) = true}

It can be seen that MaxCov(Γ) = SAT(ψ) since the only way to cover each node Ci ∈ U is to
pick assignments to all vertices adjacent to Ci so that they are all consistent with the assignment
α = σV (Ci) (and that Ci(α) = true).

The converse direction is not straightforward. We apply H̊astad [H̊as01] reduction10 to reduce
an instance Γ of MaxCov to a 3-SAT instance of size f(|ΣU |+|ΣV |)·linear(|U |+|V |) with a hardness
gap 1−ε, for some constant ε > 0 (the hardness gap is different from the original MaxCov instance).
Note that f in the H̊astad’s construction is a doubly exponential function. The equivalent between
MaxCov and 3-SAT holds only when |ΣU |+ |ΣV | is constant (or at most log log(|V |+ |U |)).

F On Gap-ETH

While Gap-ETH may sound like a very strong assumption, as pointed out in [Din16; MR16], there
are a few evidences suggesting that the conjecture may indeed be true:

10Here we apply only the Hastad’s reduction from label cover to 3SAT, without parallel repetition.
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• In a simplified and slightly inaccurate manner, the PCP theorem [AS98; ALMSS98] can be
viewed as a polynomial time reduction that takes in a 3-CNF formula Φ and produces another
3-CNF formula Φ′ such that, if Φ is satisfiable, then Φ′ is satisfiable, and, if Φ is unsatisfiable,
Φ′ is not only unsatisfiable but also not even 0.99-satisfiable. By now, it is know that the size
of Φ′ can be made size small as n polylog(n) where n is the size of Φ [Din07]. This means
that, assuming ETH, Gap-3SAT cannot be solved in 2o(n/ polylogn) time, which is only a factor
of polylog n off from what we need in Gap-ETH. Indeed, as stated earlier, if a linear-size PCP,
one in which Φ′ is of size linear in n, exists then Gap-ETH would follow from ETH.

• No subexponential-time algorithm is known even for the following (easier) problem, which is
sometimes referred to as refutation of random 3-SAT: for a constant density parameter ∆,
given a 3-CNF formula Φ with n variables and m = ∆n clauses, devise an algorithm that
outputs either SAT or UNSAT such that the following two conditions are satisfied:

– If Φ is satisfiable, the algorithm always output SAT.

– Over all possible 3-CNF formulae Φ with n clauses and m variables, the algorihtm
outputs UNSAT on at least 0.5 fraction of them.

Note here that, when ∆ is a sufficiently large constant (say 1000), a random 3-CNF formula
is, with high probability, not only unsatisfiable but also not even 0.9-satisfiable. Hence, if
Gap-ETH fails, then the algorithm that refutes Gap-ETH will also be a subexponential time
algorithm for refutation of random 3-SAT with density ∆.

Refutation of random 3-SAT, and more generally random CSPs, is an important question that
has connections to many other fields, including hardness of approximation, proof complexity,
cryptography and learning theory. We refer the reader to [AOW15] for a more comprehensive
review of known results about the problem and its applications in various areas. Despite being
intensely studied for almost three decades, no subexponential-time algorithm is known for the
above regime of parameter. In fact, it is known that the Sum-of-Squares hierarchies cannot
refute random 3-SAT with constant density in subexponential time [Gri01; Sch08]. Given how
powerful SDP [Rag08], and more specifically Sum-of-Squares [LRS15], are for solving (and
approximating) CSPs, this suggests that refutation of random 3-SAT with constant density,
and hence Gap-3SAT, may indeed be exponentially hard or, at the very least, beyond our
current techniques.

• Dinur speculated that Gap-ETH might follow as a consequence of some cryptographic as-
sumption [Din16]. This was recently confirmed by Applebaum [App17] who showed that
Gap-ETH follows from an existence of any exponentially-hard locally-computable one-way
function. In fact, he proved an even stronger result that Gap-ETH follows from ETH for
some CSPs that satisfy certain “smoothness” properties.

Lastly, we note that the assumption m = O(n) made in the conjecture can be made without loss
of generality. As pointed out in both [Din16] and [MR16], this follows from the fact that, given a
3-SAT formula φ with m clauses and n variables, if we create another 3-SAT formula φ′ by randomly
selected m′ = ∆n clauses, then, with high probability, |SAT(φ)/m− SAT(φ′)/m′| ≤ O(1/∆).
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