Remarks: In all the algorithms, always explain their correctness and analyze their complexity. The complexity should be as small as possible. A correct algorithm with large complexity, may not get full credit.

Choose 5 out of the next 6 questions.

Question 1: You are given a sorted array A and a number x. We know that x belongs to the array, namely, A[k] = x for some k. Give an algorithm to find x in A that works “well” if k is “close” to n or “very small” (close to 1). The running time should depend on n and k.

Example: For the best solution, if k = n - constant the running time should be constant, etc.

Question 2: You are given a black-box algorithm \(\mathcal{A} \) that can sort up to \(p \) elements in \(O(p) \) time. However, \(p \) may be much smaller than \(n \) (say \(p = \log n \), or \(p = \sqrt{n} \) or \(p = O(1) \)). Write an algorithm that uses \(\mathcal{A} \) to sort. The running time should be a function of \(n, p \). If \(p = n \) the running time is \(O(n) \) and if \(p = 1 \), the running time is \(O(n \log n) \). Try to make the running time go down if \(p \) goes up.

Question 3: Answer true or false for all the following questions and explain your answer precisely.

1. Say that we can find the \(\lceil n/2 \rceil \) largest number (the median) in an array of \(n \) elements in \(O(n) \). Using that we can make Quicksort run in \(O(n \log n) \) time (worse case of course).

2. The \(i \) and the \(i+1 \) largest elements in an array must be compared in a (comparison based) sorting algorithm

3. There are cases so that two sorted arrays \(A \) and \(B \) each with \(n \) elements require \(2 \cdot n - 1 \) comparisons to merge.

4. The worse cases and the best case of Mergesort perform the same number of comparison as a function of \(n \) and even with the same constant

Question 4: Solve the subset sum problem for items \(a_1, a_2, \ldots, a_n \) and target \(S \) if the following property holds. For every \(i, a_i > \sum_{j=1}^{i-1} a_j \)

Question 5: Let \(S = \{a_1, a_2, \ldots, a_n\} \) be a set of positive integers. A contiguous subset of \(S \) is a a subset \(\{a_i, a_{i+1}, \ldots, a_j\} \), \(i \leq j \) that contains all the elements \(a_p, \ i \leq p \leq j \) (including \(a_i, a_j \)). Give an algorithm that computes the number of contiguous subsets of \(S \) whose sum of elements is divisible by 3
Question 6: Give an algorithm to compute the number of (not necessarily contiguous) subsets of S whose sum of elements is divisible by 3