MIDTERM

Remarks: In all the algorithms, always explain their correctness and analyze their complexity. The complexity should be as small as possible. A correct algorithm with large complexity, may not get full credit.

Choose 4 out of the next 5 questions.

Question 1: You are given a sorted array A and a number x. We know that x belongs to the array, namely, $A[k] = x$ for some k. Give an algorithm to find x in A that works “well” if k is “close” to n or “very small” (close to 1). The running time should depend on n and k.

Example: For the best solution, if $k = n - constant$ the running time should be constant, etc.

Question 2: You are given a black-box algorithm A that can sort up to p elements in $O(p)$ time. However, p may be much smaller than n (say $p = \log n$, or $p = \sqrt{n}$ or $p = O(1)$). Write an algorithm that uses A to sort. The running time should be a function of n, p. If $p = n$ the running time is $O(n)$ and if $p = 1$, the running time is $O(n \log n)$. Try to make the running time go down if p goes up.

Question 3: Answer true or false for all the following questions and explain your answer precisely.

1. Say that we can find the $\lceil n/2 \rceil$ largest number (the median) in an array of n elements in $O(n)$. Using that we can make Quicksort run in $O(n \log n)$ time (worse case of course).
2. The i and the $i+1$ largest elements in an array must be compared in a (comparison based) sorting algorithm
3. There are cases so that two sorted arrays A and B each with n elements require $2 \cdot n - 1$ comparisons to merge.
4. The worse cases and the best case of Mergesort perform the same number of comparison as a function of n and even with the same constant

Question 4: You are given an array A and a number z. Write an algorithm that finds if there are 3 (different) entries $A[i], A[j], A[k]$ so that $A[i] + A[j] + A[k] = z$.

Question 5: Let $S = \{a_1, a_2, \ldots, a_n\}$ be a set of positive integers. A contiguous subset of S is a a subset $\{a_i, a_{i+1}, \ldots, a_j\}$, $i \leq j$ that contains all the elements a_p, $i \leq p \leq j$ (including a_i, a_j). Give an algorithm that computes the number of contiguous subsets of S whose sum of elements is divisible by 3.